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This paper studies distributed control of bearing-constrained multi-
agent formations using bearing-only measurements. In order to analyze
bearing-constrained formations, we first present a bearing rigidity the-
ory that is applicable to arbitrary dimensions. Based on the proposed
bearing rigidity theory, we investigate distributed bearing-only forma-
tion control in arbitrary dimensions in the presence of a global reference
frame whose orientation is known to each agent. Using a Lyapunov
approach, we show that the control law stabilizes infinitesimally bear-
ing rigid formations almost globally and exponentially. The results are
demonstrated with simulation examples.

I. Introduction

The precise distributed control of multi-agent formations is an enabling technology
for a wide range of aerospace applications. For deep space and orbital applications, for-
mation flying of spacecrafts can be used to perform hifidelity sensor fusion, such as in
interferometry, with an increase in mission robustness and reduction of cost [1,2]. Accu-
rate formation control of unmanned aerial vehicles can lead to fuel savings and increased
performance in problems related to cooperative tracking [3]. Despite the growing need
for formation flying, there remain many challenges related to the design of distributed
controllers for such systems. In particular, the sensing mediums available to a particular
multi-agent mission will often dictate specialized control solutions. This has spurred in-
terest across the aerospace and controls communities and is currently an active area of
research [4–12].

One well-studied solution to the formation control problem employs the mathemat-
ical theory of distance rigidity [13–16]. Distance-based control schemes, however, are
restrictive due to sensor costs and additional constraints such as the degradation of mea-
surement fidelity as a function of range. A more cost-effective solution is to consider
formation control using inter-agent bearings. In recent years, formation shape control
with bearing constraints has also attracted much attention [7, 17–24]. The fundamental
tool for analyzing bearing-constrained formations is the bearing rigidity theory (some-
times referred to as parallel rigidity theory) [18, 20, 21, 25, 26]. However, unlike distance
rigidity which has been systematically studied since the 1970s [13–16], bearing rigidity
theory has not been completely established yet. The existing studies on bearing rigidi-
ty [18,20,21,25] mainly focused on two-dimensional ambient spaces, whereas a systematic
bearing rigidity theory that is applicable to arbitrary dimensions is still lacking. This
motivates the subject of this work.

We consider in this paper a distributed bearing-only formation control problem where
the formation is bearing-constrained and each agent has access to bearing-only measure-
ments of their neighbors. The bearing measurements are directly applied in the formation
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control, and it is not required to estimate any other quantities from the bearing measure-
ments. The research presented in this paper is applicable to a wide range of tasks such as
vision-based cooperative control of autonomous vehicles [27–29] and satellite formation
control using line-of-sight measurements [7].

Although bearing-only formation control has attracted much interest in recent years,
many problems on this topic remain open. The studies in [19–21] considered bearing-
constrained formation control in two-dimensional spaces, but required access to position
or other measurements in the proposed control laws. The results reported in [28] only
require bearing measurements. The bearing measurements, however, are used to estimate
additional relative-state information such as distance ratios or scale-free coordinates. The
works in [7, 17, 18, 22, 23] studied formation control with bearing measurements directly
applied in the control. However, these results were applied to special formations, such
as cyclic formations, and may not be extendable to arbitrary formation shapes. A very
recent work reported in [24] solved bearing-only formation control for arbitrary underly-
ing sensing graphs. This result, however, is valid only for two-dimensional formations.
Bearing-only formation control in arbitrary dimensions with general underlying sensing
graphs still remains an open problem.

The contributions of this paper are twofold. First, we propose a bearing rigidity theory
that is applicable to arbitrary dimensions. Analogously to distance rigidity theory, we
define notions of bearing rigidity, global bearing rigidity, and infinitesimal bearing rigidity.
It is rigorously proved that bearing rigidity and global bearing rigidity are equivalent and
infinitesimal bearing rigidity can uniquely determine the shape of a framework. Second,
based on the proposed bearing rigidity theory, we investigate distributed bearing-only
formation control in arbitrary dimensions in the presence of a global reference frame
whose orientation is known to each agent (i.e., by endowing each agent with a compass).
The case without global reference frames is addressed in [30]. Using a Lyapunov approach,
we show that the proposed control law stabilizes infinitesimally bearing rigid formations
almost globally and exponentially.

Notations Given Ai ∈ Rp×q for i = 1, . . . , n, denote diag(Ai) , blkdiag{A1, . . . , An} ∈
Rnp×nq. Let Null(·) and Range(·) be the null space and range space of a matrix, respec-
tively. Denote Id ∈ Rd×d as the identity matrix, and 1 , [1, . . . , 1]T. Let ‖ · ‖ be the
Euclidian norm of a vector or the spectral norm of a matrix, and⊗ the Kronecker product.

An undirected graph, denoted as G = (V , E), consists of a vertex set V = {1, . . . , n}
and an edge set E ⊆ V × V with m = |E|. The set of neighbors of vertex i is denoted as
Ni , {j ∈ V : (i, j) ∈ E}. An orientation of an undirected graph is the assignment of
a direction to each edge. An oriented graph, denoted as Gσ = (Eσ,V), is an undirected
graph together with an orientation. If (i, j) ∈ Eσ, vertex i is termed the tail and vertex j
the head of the edge (i, j). The incidence matrix H ∈ Rm×n of an oriented graph is the
{0,±1}-matrix with rows indexed by edges and columns by vertices: [H]ki = 1 if vertex i
is the head of edge k, [H]ki = −1 if vertex i is the tail of edge k, and [H]ki = 0 otherwise.
For a connected graph, one always has H1 = 0 and rank(H) = n− 1.

II. Bearing Rigidity in Arbitrary Dimensions

The existing literature on bearing rigidity theory is developed mainly for two-dimensional
ambient spaces. In this section, we propose a bearing rigidity theory that is applicable
to arbitrary dimensions. The connection between the bearing rigidity and the popular



distance rigidity will also be explored.
The bearing rigidity theory is built on the notion of a framework consisting of an

undirected graph, G, and a configuration, p; we denote a framework as G(p). A configura-
tion in Rd (d ≥ 2) is a finite collection of n (n ≥ 2) points, p = [pT1 , . . . , p

T
n ]T ∈ Rdn with

pi 6= pj for all i 6= j. Each vertex in the graph corresponds to a point in the configuration.
For a framework G(p), define the edge vector and the bearing, respectively, as

eij , pj − pi, gij , eij/‖eij‖, ∀(i, j) ∈ E . (1)

Note eij = −eji and gij = −gji. It is often helpful to consider an arbitrary oriented
graph, Gσ = {V , Eσ}, and express the edge vector and the bearing for the kth directed
edge (i, j) ∈ Eσ as

ek , pj − pi, gk , ek/‖ek‖, ∀k ∈ {1, . . . ,m}. (2)

Let e = [eT1 , . . . , e
T
m]T and g = [gT1 , . . . , g

T
m]T. Note e satisfies e = H̄p where H̄ = H ⊗ Id

and H is the incidence matrix.
We now introduce a particularly important orthogonal projection matrix operator,

which will be widely used in this paper. For any nonzero vector x ∈ Rd (d ≥ 2), define
the operator P : Rd → Rd×d as

Px , Id −
x

‖x‖
xT

‖x‖ .

Note Px is an orthogonal projection matrix which geometrically projects any vector onto
the orthogonal compliment of x. It is easily verified that PT

x = Px, P
2
x = Px, and Px

is positive semi-definite. Moreover, Null(Px) = span{x} and the eigenvalues of Px are
{0, 1, . . . , 1}, where the zero eigenvalue is simple and the multiplicity of the eigenvalue 1
is d− 1.

In bearing rigidity theory, the relationship of two frameworks is evaluated by compar-
ing the bearings of them. The bearings of two vectors are the same only if they are parallel
to each other. As a result, the notion of parallel vectors is the core for the development
of bearing rigidity theory. In our work, we use the projection matrix to characterize if
two vectors in an arbitrary dimension are parallel to each other.

Corollary 1. Two nonzero vectors x, y ∈ Rd (d ≥ 2) are parallel if and only if Pxy = 0
(or equivalently Pyx = 0).

Based on Corollary 1, we define the following notations of bearing rigidity analogously
to the conventional distance rigidity theory.

Definition 1 (Bearing Equivalency). Two frameworks G(p) and G(p′) are bearing equiv-
alent if P(pi−pj)(p

′
i − p′j) = 0 for all (i, j) ∈ E.

Definition 2 (Bearing Congruency). Two frameworks G(p) and G(p′) are bearing con-
gruent if P(pi−pj)(p

′
i − p′j) = 0 for all i, j ∈ V.

Definition 3 (Bearing Rigidity). A framework G(p) is bearing rigid if there exists a
constant ε > 0 such that any framework G(p′) that is bearing equivalent to G(p) and
satisfies ‖p′ − p‖ < ε is also bearing congruent to G(p).

Definition 4 (Global Bearing Rigidity). A framework G(p) is globally bearing rigid if an
arbitrary framework that is bearing equivalent to G(p) is also bearing congruent to G(p).



We next define the bearing rigidity matrix and infinitesimal bearing rigidity. To do
that, first define the bearing function FB : Rdn → Rdm as

FB(p) ,


...

pj−pi
‖pj−pi‖

...

 ∈ Rdm.

Each entry of FB(p) corresponds to the bearing of an edge in the framework. The bearing
rigidity matrix is defined as the Jacobian of the bearing function,

RB(p) ,
∂FB(p)

∂p
∈ Rdm×dn. (3)

Let dp be a variation of the configuration p. If RB(p)dp = 0, then dp is called an
infinitesimal bearing motion of G(p). This is analogous to infinitesimal motions used in
distance-based rigidity. Distance preserving motions of a framework include rigid-body
translations and rotations, whereas bearing preserving motions of a framework include
translations and scalings.

Definition 5 (Infinitesimal Bearing Rigidity). A framework is infinitesimally bearing
rigid if the infinitesimal bearing motion only corresponds to translations and scalings of
the entire framework.

We next derive a useful matrix expression of RB(p).

Proposition 1. The bearing rigidity matrix in (3) can be expressed as

RB(p) = diag

(
Pgk
‖ek‖

)
H̄. (4)

Proof. Consider an oriented graph and express the bearings as {gk}mk=1. Then, the bearing
function can be written as FB(p) = [gT1 , . . . , g

T
m]T. It follows from gk = ek/‖ek‖ that

∂gk
∂ek

=
1

‖ek‖

(
Id −

ek
‖ek‖

eTk
‖ek‖

)
=

1

‖ek‖
Pgk .

As a result, ∂FB(p)/∂e = diag (Pgk/‖ek‖) and consequently

∂FB(p)

∂p
=
∂FB(p)

∂e

∂e

∂p
= diag

(
Pgk
‖ek‖

)
H̄.

The matrix expression (4) can be used to characterize the null space and the rank of
the bearing rigidity matrix.

Proposition 2. For any framework G(p) in Rd (n ≥ 2, d ≥ 2), we have span{1⊗Id, p} ⊆
Null(RB(p)) and consequently rank(RB(p)) ≤ dn− d− 1.

Proof. First, it is clear that span{1 ⊗ Id} ⊆ Null(H̄) ⊆ Null(RB(p)). Second, since
Pekek = 0, we have RB(p)p = diag(Pek/‖ek‖)H̄p = diag(Pek/‖ek‖)e = 0 and hence
p ⊆ Null(RB(p)). The rank inequality rank(RB(p)) ≤ dn − d − 1 follows immediately
from span{1⊗ Id, p} ⊆ Null(RB(p)).



For any undirected graph G = {E ,V}, denote Gκ as the complete graph over the same
vertex set V , and Rκ

B(p) as the bearing rigidity matrix of the framework Gκ(p). Then,
the necessary and sufficient conditions for bearing equivalency, bearing congruency, and
global bearing rigidity can be obtained as below.

Proposition 3. Two frameworks G(p) and G(p′) are bearing equivalent if and only if
R(p)p′ = 0, and bearing congruent if and only if Rκ(p)p′ = 0.

Proof. SinceR(p)p′ = diag (Id/‖ek‖) diag (Pgk) H̄p′ = diag (Id/‖ek‖) diag (Pgk) e′, we have

R(p)p′ = 0 ⇔ Pgke
′
k = 0, ∀k ∈ {1, . . . ,m}.

Therefore, by the definition of bearing equivalency, the two frameworks are bearing equiv-
alent if and only if R(p)p′ = 0. By the definition of bearing congruency, it can be analo-
gously proved that two frameworks are bearing equivalent if and only if Rκ(p)p′ = 0.

Theorem 1. A framework G(p) in Rd (n ≥ 2, d ≥ 2) is globally bearing rigid if and only
if Null(R(p)) = Null(Rκ(p)) or equivalently rank(R(p)) = rank(Rκ(p)).

Proof. Necessity: Suppose framework G(p) is globally bearing rigid. We first prove
Null(R(p)) ⊆ Null(Rκ(p)). Consider an arbitrary dp satisfying R(p)dp = 0. Since
R(p)p = 0, we further have R(p)(p + dp) = 0. As a result, framework G(p + dp) is
bearing equivalent to G(p) by Proposition 3. Then, it follows from the global bear-
ing rigidity of G(p) that G(p + dp) is also bearing congruent to G(p). By Proposi-
tion 3, we have Rκ(p)(p + dp) = 0 and consequently Rκ(p)dp = 0. Therefore, any
dp ∈ Null(R(p)) is also in Null(Rκ(p)) and thus Null(R(p)) ⊆ Null(Rκ(p)). We sec-
ond prove Null(Rκ(p)) ⊆ Null(R(p)) holds for an arbitrary framework G(p) (even it
is not bearing rigid). Consider an arbitrary dp satisfying Rκ(p)dp = 0. As a result,
Rκ(p)(p + dp) = 0 and hence G(p + dp) is bearing congruent to G(p) by Proposition 3.
Since bearing congruency implies bearing equivalency, we know R(p)(p + dp) = 0 and
hence R(p)dp = 0. Therefore, any dp ∈ Null(Rκ(p)) is also in Null(R(p)) and thus
Null(Rκ(p)) ⊆ Null(R(p)). In summary, Null(R(p)) ⊆ Null(Rκ(p)).

Sufficiency: Any framework G(p′) that is bearing equivalent to G(p) satisfy R(p)p′ = 0
by Proposition 3. Then, it follows from Null(R(p)) = Null(Rκ(p)) that Rκ(p)p′ = 0, which
means G(p′) is also bearing congruent to G(p). As a result, G(p) is globally bearing rigid.

Because R(p) and Rκ(p) have the same column number, it follows immediately that
Null(Rκ(p)) = Null(R(p)) if and only if rank(Rκ(p)) = rank(R(p)).

Theorem 2. A framework is bearing rigid if and only if it is globally bearing rigid.

Proof. It is obvious that global bearing rigidity implies bearing rigidity. We next prove
the converse is also true. Suppose the framework G(p) is bearing rigid. By the definition of
bearing rigidity and Proposition 3, any framework satisfying R(p)p′ = 0 and ‖p′− p‖ ≤ ε
also satisfies Rκ(p)p′ = 0. By denoting dp = p′ − p, we equivalently have

∀‖dp‖ ≤ ε, R(p)(p+ dp) = 0⇒ Rκ(p)(p+ dp) = 0.

Then, it follows from R(p)p = 0 and Rκ(p)p = 0 that

∀‖dp‖ ≤ ε, R(p)dp = 0⇒ Rκ(p)dp = 0,

which means Null(R(p)) ⊆ Null(Rκ(p)). Since Null(Rκ(p)) ⊆ Null(R(p)) for an arbitrary
framework as shown in the proof of Theorem 1, we have Null(R(p)) = Null(Rκ(p)) and
consequently G(p) is global bearing rigid by Theorem 1.



(a) (b)

Figure 1: Collinear frameworks that are globally bearing rigid but not infinitesimally bearing rigid.
Frameworks (a) and (b) are bearing equivalent and congruent and also globally bearing rigid. Observe,
however, that the middle point can move along the line freely without changing any bearings, implying
they are not infinitesimally bearing rigid.

By the definition, infinitesimal bearing rigidity implies bearing rigidity and thus global
bearing rigidity by Theorem 2. But the converse is not true. Global bearing rigidity does
not imply infinitesimal bearing rigidity in general. For example, the collinear frameworks
shown in Fig. 1 are globally bearing rigid but not infinitesimally bearing rigid. From this
example, we also know that global bearing rigidity does not imply a unique shape of the
framework. In fact, as will be shown later, it is infinitesimal bearing rigidity that implies
unique shapes.

We now give the necessary and sufficient condition for infinitesimal bearing rigidity.

Theorem 3. A framework G(p) in Rd (n ≥ 2, d ≥ 2) is infinitesimally bearing rigid if
and only if

Null(RB(p)) = span{1⊗ Id, p} = span{1⊗ Id, p− 1⊗ p̄},

or equivalently rank(RB(p)) = dn− d− 1 where p̄ = (1⊗ Id)Tp/n.

Proof. Proposition 2 shows span{1⊗ Id, p} ⊆ Null(RB(p)). Observe 1⊗ Id and p corre-
spond to a rigid-body translation and a scaling of the framework, respectively. The stated
condition directly follows from the definition of infinitesimal bearing rigidity. Note also
that span{1⊗ Id, p− 1⊗ p̄} is an orthogonal basis for span{1⊗ Id, p}.

In particular, a framework G(p) is infinitesimally bearing rigid in R2 if and only if
rank(RB(p)) = 2n− 3, and in R3 if and only if rank(RB(p)) = 3n− 4. The next theorem
shows that infinitesimal bearing rigidity can globally and uniquely determine the shape
of a framework.

Theorem 4. An infinitesimally bearing rigid framework can be globally and uniquely
determined up to a translation and a scaling factor.

Proof. Suppose G(p) is an infinitesimally bearing rigid framework in Rd (n ≥ 2 and
d ≥ 2). Consider an arbitrary framework G(p′) that is bearing equivalent to G(p). Our
goal is to prove G(p′) is different from G(p) only in a translation and a scaling factor.

Consider an oriented graph and denote the bearings of G(p) and G(p′) as {gk}mk=1 and
{g′k}mk=1, respectively. Then, it follows from the bearing equivalency that gk is parallel to
g′k for all k ∈ {1, . . . ,m}. The configuration p′ can always be decomposed as

p′ = cp+ 1⊗ η + q, (5)

where c ∈ R \ {0} stands for a scaling factor, η ∈ Rd denotes a rigid-body translation of
the framework, and q ∈ Rdn, which satisfies q ⊥ span{1 ⊗ Id, p}, represents a transfor-
mation other than translation and scaling. Note Null(R(p)) = span{1⊗ Id, p} due to the
infinitesimal bearing rigidity of G(p). Then, multiplying R(p) on both sides of (5) yields

R(p)p′ = R(p)q, (6)



Since G(p′) is bearing equivalent to G(p), we have R(p)p′ = 0 by Proposition 3. Therefore,
(6) implies

R(p)q = 0.

Since q ⊥ span{1⊗ Id, p} = Null(R(p)), the above equation suggests q = 0. As a result,
p′ is different from p only in a scaling factor c and a rigid-body translation η.

III. Bearing-only Formation Control

In this section, we investigate bearing-only formation control of multi-agent systems in
arbitrary dimensions in the presence of a global reference frame. It is assumed that each
agent knows the orientation of a common (global) frame and the bearing measurements
of their neighbors can be expressed in this frame. In practice, each agent may carry,
for example, an inertial measurement unit (IMU) and a global positioning system (GPS)
receiver to measure their three-dimensional orientations with respect to a global reference
frame.

Consider n agents in Rd (n ≥ 2 and d ≥ 2) and assume there is a global inertial
reference frame known to each agent. The vector quantities shown below are all expressed
in this global frame. Denote pi ∈ Rd as the position of agent i ∈ {1, . . . , n}. The dynamics
of agent i is

ṗi = vi,

where vi ∈ Rd is the velocity input to be designed. Denote p = [pT1 , . . . , p
T
n ]T ∈ Rdn

and v = [vT1 , . . . , v
T
n ]T ∈ Rdn. The underlying sensing graph G = {V , E} is assumed

to be undirected and fixed, and the formation is denoted by the framework G(p). The
edge vector eij and the bearing gij are defined as in (1). Given an arbitrary orientation
of the graph, we can express the edge and bearing vectors as e = [eT1 , . . . , e

T
m]T and

g = [gT1 , . . . , g
T
m]T as defined in (2).

Since each agent knows the orientation of the global frame, the bearing measurements
obtained by agent i are {gij}j∈Ni

. The constant bearing constraints for the target forma-
tion are {g∗ij}(i,j)∈E with g∗ij = −g∗ji. Examples are given in Fig. 2 to illustrate bearing
constraints.

Definition 6 (Feasible Bearing Constraints). The bearing constraints {g∗ij}(i,j)∈E are fea-
sible if there exists a formation G(p) that satisfies gij = g∗ij for all (i, j) ∈ E.

The bearing-only formation control problem to be solved in this section is stated as
below.

Problem 1. Given feasible constant bearing constraints {g∗ij}(i,j)∈E and an initial position
p(0), design vi (i ∈ V) based only on the bearing measurements {gij}j∈Ni

such that gij →
g∗ij as t→∞ for all (i, j) ∈ E.

A. A Bearing-Only Control Law

The proposed formation control law that relies only on bearing measurements is

vi = −
∑
j∈Ni

Pgijg
∗
ij, ∀i ∈ V . (7)
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Figure 2: Initial formation: grey; target formation: black. (a) The bearing constraints satisfied by the
target formation are g∗12 = −g∗21 = [0, 1]T, g∗23 = −g∗32 = [1, 0]T, g∗34 = −g∗43 = [0,−1]T, g∗41 = −g∗14 =
[−1, 0]T, and g∗13 = −g∗31 = [

√
2/2,
√

2/2]T. (b) The bearing constraints are g∗12 = −g∗21 = [0, 1]T. As can
be seen, the bearing error is reduced to zero while the inter-agent distance is unchanged.

1

gij

g∗ij

Pgijg
∗
ij

−Pgijg
∗
ij

xi

xj

Figure 3: The geometric interpretation of control law (7). The control term −Pgijg
∗
ij is perpendicular to

the bearing gij .

The control law has a clear geometric interpretation (see Fig. 3). Since the term−Pgijg∗ij is
perpendicular to gij as gTijPgijg

∗
ij = 0, the control law attempts to reduce the bearing error

of gij while preserving the distance between agents i and j. This geometric interpretation
is also demonstrated by the example shown in Fig. 2(b).

The control law (7) can be equivalently expressed in a matrix-vector form. Since g∗ij =
−g∗ji, the bearing constraints {g∗ij}(i,j)∈E can be reexpressed as {g∗k}mk=1 by considering an
oriented graph. Let g∗ = [(g∗1)T, . . . , (g∗m)T]T, then (7) can be written as

v = H̄Tdiag(Pgk)g∗ , RT(p)g∗. (8)

It should be noted that the oriented graph is merely used to obtain the matrix expression
while the underlying sensing graph of the formation is still the undirected graph G.
Moreover, it is worth mentioning that control law (8) is a modified gradient control law. If
we consider the bearing error

∑m
k=1 ‖gk−g∗k‖2, a short calculation shows the corresponding

gradient control law is u = H̄Tdiag(Pgk/‖ek‖)g∗, which is exactly u = RT
B(p)g∗, where

RB(p) is the bearing rigidity matrix. However, the gradient control requires distance
measurements ‖ek‖. By simply removing the distance term ‖ek‖, we can obtain the
proposed control law (8).

We now examine certain properties of the control law. In particular, we show that
both the centroid and scale of the formation are invariant quantities under the action of



(7). In this direction, define

p̄ ,
1

n

n∑
i=1

pi,

to be the centroid of the formation, and

s ,

√√√√ 1

n

n∑
i=1

‖pi − p̄‖2,

as the quadratic mean of the distances from the agents to the centroid. The quantity s
can thus be interpreted as the scale of the formation. Since the inter-agent distances are
not controlled, it is of great interest whether the scale of the formation will change under
the proposed control law.

Proposition 4. Under the control law (8),

ṗ ⊥ span {1⊗ Id, p} .

Proof. The dynamics ṗ = RT(p)g∗ implies ṗ ∈ Range(RT(p)). Since Range(RT(p)) ⊥
Null(R(p)), it follows that ṗ ⊥ Null(R(p)). Furthermore, Null(R(p)) = Null(RB(p)) and
span{1⊗ Id, p} ⊆ Null(RB(p)) by Proposition 2 conclude the proof.

Theorem 5. The centroid p̄ and the scale s of the formation are invariant under the
control law (8).

Proof. Since p̄ = (1⊗Id)Tp/n, we have ˙̄p = (1⊗Id)Tṗ/n. It follows from ṗ ⊥ Range(1⊗Id)
as shown in Proposition 4 that ˙̄p ≡ 0. Rewrite s as s = ‖p− 1⊗ p̄‖/√n. Then,

ṡ =
1√
n

(p− 1⊗ p̄)T
‖p− 1⊗ p̄‖ ṗ.

It follows from ṗ ⊥ p and ṗ ⊥ 1⊗ p̄ as shown in Proposition 4 that ṡ ≡ 0.

The following results, which can be obtained from Theorem 5, characterize the be-
havior of the formation trajectories.

Corollary 2. The formation trajectory under the control law (8) satisfies the following
inequalities,

(a) s ≤ maxi∈V ‖pi(t)− p̄‖ ≤ s
√
n− 1, ∀t ≥ 0.

(b) ‖pi(t)− pj(t)‖ ≤ 2s
√
n− 1, ∀i, j ∈ V , ∀t ≥ 0.

Proof. First, we prove ‖pi − p̄‖ ≤ s
√
n− 1 for all i ∈ V . On the one hand, invariance of

the centroid implies that
∑

j∈V(pj − p̄) = (pi − p̄) +
∑

j∈V,j 6=i(pj − p̄) = 0, which implies

‖pi − p̄‖2 ≤

∑
j∈V
j 6=i

‖pj − p̄‖


2

≤ (n− 1)
∑
j∈V,
j 6=i

‖pj − p̄‖2. (9)



On the other hand, scale invariance implies that ‖pi − p̄‖2 +
∑

j∈V,j 6=i ‖pj − p̄‖2 = ns2.

Substituting this expression into (9) gives ‖pi − p̄‖2 ≤ (n − 1)(ns2 − ‖pi − p̄‖2), which
indicates ‖pi − p̄‖ ≤ s

√
n− 1.

Second, we prove s ≤ maxi∈V ‖pi − p̄‖. Since maxi∈V ‖pi − p̄‖2 ≥ ‖pj − p̄‖2, we have
n(maxi∈V ‖pi − p̄‖2) ≥

∑n
i=1 ‖pi − p̄‖2 = ns2, which implies maxi∈V ‖pi − p̄‖ ≥ s.

Third, the inequality in (b) is obtained from ‖pi(t)−pj(t)‖ = ‖(pi(t)−p̄)−(pj(t)−p̄)‖ ≤
‖pi(t)− p̄‖+ ‖pj(t)− p̄‖ ≤ 2s

√
n− 1.

B. Formation Stability Analysis

In order to prove the formation stability, we adopt the following assumption.

Assumption 1. A formation that satisfies the bearing constraints {g∗ij}(i,j)∈E is infinites-
imally bearing rigid.

Remark 1. Assumption 1 means the bearing rigidity matrix RB(p) = diag (Id/‖ek‖) diag (gk) H̄
and consequently R(p) = diag (gk) H̄ both have rank dn− d− 1.

Definition 7 (Target Formation). Let G(p∗) be a target formation satisfying

(a) Bearing: (p∗j − p∗i )/‖p∗j − p∗i ‖ = g∗ij for all (i, j) ∈ E.

(b) Centroid: p̄∗ = p̄(0).

(c) Scale: s∗ = s(0).

Proposition 5. The target formation G(p∗) in Definition 7 always exists and is unique
under Assumption 1.

Proof. The bearing constraints are feasible and the centroid and the scale of a forma-
tion can be changed continuously without affecting the bearings. Therefore, one can
always find a formation that satisfies conditions (a), (b), and (c) in Definition 7, proving
existence. Observe that G(p∗) is infinitesimally bearing rigid and hence it is uniquely
determined up to a rigid-body translation and a scaling factor as shown in Theorem 4.
The translation and the scale of G(p∗) are specified in conditions (b) and (c), showing
the uniqueness of G(p∗).

Let δ , p − p∗. Denote fi(δ) , −∑j∈Ni
Pgijg

∗
ij and f(δ) = [fT

1 (δ), . . . , fT
n (δ)]T. The

δ-dynamics can be expressed as

δ̇ = f(δ) = H̄Tdiag(Pgk)g∗. (10)

As the bearing constraints are satisfied by G(p∗), showing that (8) solves Problem 1 is
equivalent to showing the formation trajectory converges to G(p∗) (i.e., δ → 0 as t→∞).
This idea was originally proposed in [24] to solve bearing-only formation control in two
dimensions. A natural question that follows this idea is whether p∗ can be calculated. In
fact, it is easy to calculate p∗ for simple formations with a small number of agents. For
more complicated formations, the calculation of p∗ may be nontrivial. But the calculation
of p∗ is not necessarily required to prove the convergence of the formation.

We next analyze the trajectories and equilibriums of the δ-dynamics (10). For the
sake of simplicity, denote r(t) , p(t)− (1⊗ p̄) and r∗ , p∗ − (1⊗ p̄∗). Due to the scale
invariance, it can be verified that ‖r(t)‖ ≡ ‖r∗‖ =

√
ns for all t ≥ 0.



1

−r∗

δ

δ‖

0

−2r∗

S

δ⊥

θ

Figure 4: Geometric interpretation of δ, which satisfies ‖δ + r∗‖ = ‖r∗‖.

Proposition 6. System (10) evolves on the surface of the sphere

S = {δ ∈ Rdn : ‖δ + r∗‖ = ‖r∗‖}.

Proof. Due to the centroid invariance, p̄(t) ≡ p̄∗. Then, it follows from δ(t) = p(t) − p∗
that δ(t) + p∗− (1⊗ p̄∗) = p(t)− (1⊗ p̄)⇔ δ(t) + r∗ = r(t). Due to the scale invariance,
‖r(t)‖ ≡ ‖r∗‖ =

√
ns. Then, ‖δ(t) + r∗‖ ≡ ‖r∗‖.

The state manifold S is illustrated by Fig. 4.

Lemma 1. Given any two unit vectors g1, g2 ∈ Rd, it always holds that gT1 Pg2g1 =
gT2 Pg1g2.

Proof. Since gT1 g1 = gT2 g2 = 1, we have gT1 Pg2g1 = gT1 (Id − g2gT2 )g1 = gT1 g1 − gT1 g2gT2 g1 =
gT2 g2 − gT2 g1gT1 g2 = gT2 (Id − g1gT1 )g2 = gT2 Pg1g2.

Theorem 6. Under Assumption 1, system (10) has two equilibrium points on S,

(a) δ = 0, where r = r∗ and gij = g∗ij, ∀ (i, j) ∈ E.

(b) δ = −2r∗, where r = −r∗ and gij = −g∗ij, ∀ (i, j) ∈ E.

Proof. Any equilibrium δ ∈ S must satisfy f(δ) = H̄Tdiag(Pgk)g∗ = 0, which implies

0 = (p∗)TH̄Tdiag(Pgk)g∗ = (e∗)Tdiag(Pgk)g∗

=
m∑
k=1

(e∗k)
TPgkg

∗
k =

m∑
k=1

‖e∗k‖(g∗k)TPgkg∗k.

Since (g∗k)
TPgkg

∗
k ≥ 0, the above equation implies (g∗k)

TPgkg
∗
k = 0 for all k. As a result,

by Lemma 1, we have gTk Pg∗kgk = 0 and consequently eTkPg∗kek = 0 for all k. Thus,

0 = eTdiag
(
Pg∗k
)
e = pT H̄Tdiag

(
Pg∗k
)︸ ︷︷ ︸

RT(p∗)

diag
(
Pg∗k
)
H̄︸ ︷︷ ︸

R(p∗)

p,

where the last equality uses the facts Pg∗k = P 2
g∗k

and e = H̄p. The above equation
indicates

R(p∗)p = 0.



Observe R(p∗) = diag(Pg∗k)H̄ has the same null space as the bearing rigidity matrix
R(p∗) = diag(Pg∗k/‖e∗k‖)H̄. Since G(p∗) is infinitesimally bearing rigid by Assumption 1,
it follows from Theorem 3 that Null(R(p∗)) = span{1 ⊗ Id, p

∗ − 1 ⊗ p̄∗}. Considering
R(p∗)p = 0⇔ R(p∗)(p− 1⊗ p̄) = 0, we have

p− 1⊗ p̄ ∈ span{1⊗ Id, p∗ − 1⊗ p̄∗}.
Because p − 1 ⊗ p̄ ⊥ Range(1 ⊗ Id), we further know p − 1 ⊗ p̄ ∈ span{p∗ − 1 ⊗ p̄∗}.
Moreover, since ‖p− 1⊗ p̄‖ = ‖p∗ − 1⊗ p̄∗‖ due to the scale invariance, we have

p− 1⊗ p̄ = ±(p∗ − 1⊗ p̄∗).
(i) In the case of p − 1 ⊗ p̄ = p∗ − 1 ⊗ p̄∗, we have p = p∗ ⇔ δ = 0 and consequently
gij = g∗ij for all (i, j) ∈ E . (ii) In the case of p − 1 ⊗ p̄ = −(p∗ − 1 ⊗ p̄∗), we have
p = −p∗ + 2(1 ⊗ p̄∗) ⇔ δ = −2(p∗ − 1 ⊗ p̄∗), and consequently gij = −g∗ij for all
(i, j) ∈ E .

Note the equilibrium δ = 0 is desired, while the other one δ = −2r∗ is undesired. At
the undesired equilibrium, the formation G(p) is geometrically a point reflection of G(p∗)
and bearing congruent to G(p∗).

Recall δ = p− p∗. Choose the Lyapunov function as

V =
1

2
‖δ‖2

Based on this Lyapunov function, we next prove the almost global exponential stability
of the desired equilibrium δ = 0.

Theorem 7 (Almost Global Exponential Stability). Under Assumption 1, the system
trajectory δ(t) of (10) exponentially converges to δ = 0 from any δ(0) ∈ S except δ(0) =
−2r∗.

Remark 2. In terms of bearings, Theorem 7 indicates that gij(t) converges to g∗ij for all
(i, j) ∈ E from any initial conditions except gij(0) = −g∗ij,∀(i, j) ∈ E.

Proof. The derivative of V is V̇ = δTδ̇ = (p− p∗)Tṗ = −(p∗)Tṗ. Substituting control law
(8) into V̇ yields

V̇ = −(p∗)TH̄Tdiag(Pgk)g∗ = −(e∗)Tdiag(Pgk)g∗

= −
m∑
k=1

(e∗k)
TPgkg

∗
k = −

m∑
k=1

‖e∗k‖(g∗k)TPgkg∗k ≤ 0. (11)

Since V̇ ≤ 0, we have ‖δ(t)‖ ≤ ‖δ(0)‖ for all t ≥ 0. Furthermore, it follows from Lemma 1
that

(g∗k)
TPgkg

∗
k = gTk Pg∗kgk,

substituting which into (11) gives

V̇ = −
m∑
k=1

‖e∗k‖gTk Pg∗kgk = −
m∑
k=1

‖e∗k‖
‖ek‖2

eTkPg∗kek

≤ − mink=1,...,m ‖e∗k‖
4(n− 1)s2︸ ︷︷ ︸

α

m∑
k=1

eTkPg∗kek, (12)



where the inequality uses the fact ‖ek‖ ≤ 2
√
n− 1s by Corollary 2(b). Inequality (12)

can be further written as

V̇ ≤ −αeTdiag(Pg∗k)e = −αpTH̄Tdiag(Pg∗k)H̄p

= −αδTH̄Tdiag(Pg∗k)H̄δ
(
Due to diag(Pg∗k)H̄p∗ = 0

)
= −αδT H̄Tdiag(Pg∗k)︸ ︷︷ ︸

RT(p∗)

diag(Pg∗k)H̄︸ ︷︷ ︸
R(p∗)

δ. (13)

Observe R(p∗) has the same rank and null space as the bearing rigidity matrix RB(p∗).
Under the assumption of infinitesimal bearing rigidity, it follows from Theorem 3 that
Null(R(p∗)) = span{1⊗ Id, p∗} and rank(R(p∗)) = dn− d− 1. As a result, the smallest
d + 1 eigenvalues of RT(p∗)R(p∗) are zero. Let the minimum positive eigenvalue of
RT(p∗)R(p∗) be λd+2. Decompose δ to δ = δ⊥ + δ‖, where δ⊥ ⊥ Null(R(p∗)) and δ‖ ∈
Null(R(p∗)). Then (13) becomes

V̇ ≤ −αλd+2‖δ⊥‖2. (14)

Note δ‖ is the orthogonal projection of δ on Null(R(p∗)) = span{1 ⊗ Id, r
∗}. Because

δ ⊥ span{1⊗Id}, we know δ‖ actually is the orthogonal projection of δ on r∗ (see Fig. 4).
Let θ be the angle between δ and −r∗. Thus, ‖δ⊥‖ = ‖δ‖ sin θ, and (14) becomes

V̇ ≤ −αλd+2 sin2 θ‖δ‖2. (15)

It can be seen from Fig. 4 that θ ∈ [0, π/2). Let θ0 be the value of θ at time t = 0. Since
‖δ(t)‖ ≤ ‖δ(0)‖ for all t, it is clear from Fig. 4 that θ(t) ≥ θ0. Then, (15) becomes

V̇ ≤ − 2αλd+2 sin2 θ0︸ ︷︷ ︸
K

V.

(i) If θ0 > 0, then K > 0. As a result, the error ‖δ(t)‖ decreases to zero exponentially
fast. (ii) If θ0 = 0, it can be seen from Fig. 4 that δ(0) = −2r∗ which is the undesired
equilibrium. In summary, the system trajectory δ(t) converges to δ = 0 exponentially
fast from any initial points except δ = −2r∗.

We would like to mention that the eigenvalue λd+2 of RT(p∗)R(p∗) affect the conver-
gence rate of the system. Motivated by the distance rigidity maintenance control [31],
we call λd+2 as the bearing rigidity eigenvalue. It is obvious that λd+2 > 0 if and only if
G(p∗) is infinitesimally bearing rigid. As a result, λd+2 can be viewed as a measure of the
“degree of infinitesimal bearing rigidity” of a framework.

IV. Simulation

We have already presented two simulation examples previously in Fig. 2. As shown
in Fig. 2(a), the collinear initial formation is not a problem for bearing-only formation
control though they may cause troubles in distance formation control. More simulation
examples are shown in Figs. 5, 6, and 7. The initial formations in these examples are
generated randomly. Figure 5 is motivated by the spacecraft interferometry problem.
In [6] it is shown that the so-called X-array aperture configuration provides the best
performance. Using the proposed bearing-only formation control, a random non-coplanar



configuration is able to converge to the desired X-array formation. In [4], tetrahedral
formation shapes are considered motivated by ongoing formation spacecraft missions. As
shown in Figs. 5 and 6, these formations can be achieved efficiently under the action
of the proposed control law. Finally, Figure 7 shows the proposed control for a large
formation consisting of 27 agents with the target formation a grid in three-dimensional
space. In all examples the bearing error is also plotted.

(a) Initial formation (b) Trajectory
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Figure 5: A three-dimensional coplanar formation with n = 5, m = 8, and rank(RB) = 11 = 3n− 4.
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Figure 6: A three-dimensional tetrahedral formation with n = 4, m = 6, and rank(RB) = 8 = 3n− 4.

V. Conclusions

In this paper, we first proposed a bearing rigidity theory that is applicable to arbitrary
dimensional spaces. We then proposed a bearing-only formation control law and proved
the almost global and exponential stability for infinitesimal bearing rigid formations. In
recent years, distance-based control is the most widely adopted approach to formation
shape control problems. The bearing rigidity and bearing-based formation control pro-
posed in this paper provide an attractive alternative to the distance-based approaches.
For example, distance-based formation control laws usually can only ensure local stability,
while the proposed bearing-based control law ensures almost global stability. Moreover,
distance-based formation control usually relies on the assumption on minimal infinitesi-
mal distance rigidity. But the infinitesimal distance rigidity does not uniquely determine
the shape of a framework. As a result, the formation may converge to an undesired shape
given certain initial conditions. In addition, the minimal rigidity assumption also con-
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Figure 7: A three-dimensional grid formation with n = 27, m = 62, and rank(RB) = 77 = 3n− 4.

strains the number of the edges in the formation and consequently restricts its application
in practice. As a comparison, the bearing-based formation control relies on infinitesimal
bearing rigidity, which can uniquely determine the shape of a framework and does not
constrain the edge number.
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