Exercise \#1

Analysis and Control of Multi-Agent Systems

Problem 1

i) Mesbahi \& Egerstedt Exercise 2.2

The degree sequence for a graph is a listing of the degrees of its nodes; thus K_{3} has the degree sequence $2,2,2$. Is there a graph with the degree sequence $3,3,3,3,5,6,6,6,6,6,6$? How about with the degree sequence $1,1,3,3,3,3,5,6,8,9$? If yes, draw the graph; otherwise, explain why there is no such graph.

ii) Mesbahi © Egerstedt Exercise 2.5

Let \mathcal{G} be an undirected graph on n vertices with c connected components. Show that $\operatorname{rank} L(\mathcal{G})=n-c$.

iii) Mesbahi EG Egerstedt Exercise 2.11

Show that any graph on n vertices that has more than $n-1$ edges contains a cycle.
iv)

Explain clearly what is the largest possible number of vertices in a graph with 19 edges and all vertices of degree at least 3. Explain why this is the maximum value.
v)

For an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, one can define the complement graph, $\overline{\mathcal{G}}=(\mathcal{V}, \overline{\mathcal{E}})$, with $\overline{\mathcal{E}}=[\mathcal{V}]^{2} \backslash \mathcal{E}$.

- Show that $\mathcal{G} \cup \overline{\mathcal{G}}=K_{n}$.
- Show that \mathcal{G} and $\overline{\mathcal{G}}$ can not both be disconnected.

Problem 2

Bipartite Graphs

A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is called bipartite if there is a partition of the node-set \mathcal{V} into two disjoint subsets \mathcal{V}_{1} and \mathcal{V}_{2} (that is, $\mathcal{V}=\mathcal{V}_{1} \cup \mathcal{V}_{2}$, and $\mathcal{V}_{1} \cap \mathcal{V}_{2}=\emptyset$), such that every edge connects a vertex in \mathcal{V}_{1} to a vertex in \mathcal{V}_{2} (i.e., $\mathcal{E} \subseteq\left\{\left\{v_{i}, v_{j}\right\} \mid v_{i} \in \mathcal{V}_{1}, v_{j} \in \mathcal{V}_{2}\right\}$).
i)

Determine whether the following graphs are bipartite. If so, give the partition of the vertices into two sets.

Figure 1: Are these graphs bipartite?
ii)

The adjacency matrix of a bipartite graph \mathcal{G} can always be expressed (after a relabeling of the nodes) as

$$
A(\mathcal{G})=\left[\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right]
$$

where $A(\mathcal{G}) \in \mathbb{R}^{n_{1}+n_{2} \times n_{1}+n_{2}}$ and $B \in \mathbb{R}^{n_{1} \times n_{2}}$. Show that if λ is an eigenvalue of $A(\mathcal{G})$ then so is $-\lambda$.
iii)

Prove that a connected k-regular graph \mathcal{G} is bipartite if and only if $-k$ is an eigenvalue of $A(\mathcal{G})$.

Problem 3

7 Bridges of Königsberg

The city of Königsberg in Prussia was split by the Pregel river. The city also included two large islands and were connected to the mainland with a network of 7 bridges; see Figure 2. In 1735, Leohnard Euler set out to solve the problem of whether or not there was a walk through the city that crossed each of the 7 bridges exactly once. The basis of his solution is considered to be the origin of modern graph Theory.

Figure 2: Map of Königsberg in 1735.

Using the map in Figure 2, draw an equivalent graph-theoretic representation. That is, define a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ that represents the network of bridges and how it connects the land masses of Königsberg. Determine the answer to the seven bridges problem.

An Eulerian Circuit, named in honor of Leohnard Euler, is a walk in a graph beginning and ending at the same vertex that uses every edge exactly once. Prove that a necessary condition for a graph to have an Eulerian Circuit (sometimes called an Eulerian graph) is that the degree of each node must be even. How does this relate to the seven bridges of Königsberg problem?

Problem 4

Incidence Matrix

Consider the following incidence matrix,

$$
E(\mathcal{G})=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 0 & 0 \\
0 & -1 & -1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1
\end{array}\right]
$$

i)

Draw the associated graph and find a spanning-tree subgraph.
i)

Let $\mathcal{T}=\left(\mathcal{V}, \mathcal{E}_{\mathcal{T}}\right) \subset \mathcal{G}$ be a spanning-tree subgraph and $E(\mathcal{T})$ its associated incidence matrix. The edges $\mathcal{E}_{\mathcal{C}}=\mathcal{E} \backslash \mathcal{E}_{\mathcal{T}}$ are the remaining edges that are not in the spanning tree. Let $\mathcal{C}=\left(\mathcal{V}, \mathcal{E}_{\mathcal{C}}\right) \subset \mathcal{G}$ be the subgraph containing all the edges not included in the spanning tree with incidence matrix $E(\mathcal{C})$.

Find an algebraic relationship between $E(\mathcal{T})$ and $E(\mathcal{C})$. Show that the null-space of the incidence matrix, $\operatorname{null}\{E(\mathcal{G})\}$, is related to the independent cycles in \mathcal{G}.

Problem 5

Adjacency Matrix

Prove the following results on the adjacency matrix:
Lemma 1. Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be an undirected graph with adjacency matrix $A(\mathcal{G})$. The number of walks from node v_{i} to v_{j} of length r is $\left[A(\mathcal{G})^{r}\right]_{i j}$ (for a matrix $M \in \mathbb{R}^{n \times m},[M]_{i j}$ refers to the element in the i th row and j th column of M).

Corollary 2. Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be an undirected graph with e edges, triangles (cycle of length 3), and adjacency matrix $A(\mathcal{G})$. Then

- $\operatorname{trace} A(\mathcal{G})=0$,
- $\operatorname{trace} A(\mathcal{G})^{2}=2 e$,
- $\operatorname{trace} A(\mathcal{G})^{3}=6 t$.

Problem 6

Matrix-Tree Theorem

Consider the graph in Figure 3

Figure 3: A graph on 4 nodes.
i)

Write the Laplacian matrix $L(\mathcal{G})$ associated with graph in Figure 3. Enumerate all the spanning trees and verify that the number of spanning trees can be computed from the determinant of any sub-matrix of $L(\mathcal{G})$ obtained by deleting a row and column.

