
D. Zelazo Analysis and Control of MAS: Exercise #3

Exercise #3
Analysis and Control of Multi-Agent Systems

Problem 1

(Mesbahi & Egerstedt 3.9, 3.11, 10.1, 10.5 )

Exercise 3.9

A matrix M is called essentially non-negative if there exists a sufficiently large µ such that M + µI is non-

negative, that is, all its entries are non-negative. Show that eMt for an essentially non-negative matrix M is

non-negative when t ≥ 0.

Exercise 3.11

Consider vertex i in the context of the agreement protocol ẋ = −L(G)x. Suppose that vertex i (the rebel)

decides not to abide by the agreement protocol, and instead fixes its state to a constant value (i.e., xi(t) = c

for all t ≥ 0). Show that all vertices converge to the state of the rebel vertex when the graph is connected.

Exercise 10.1

Consider a connected, undirected network with input nodes (one or more). Let the floating nodes be running

the standard agreement protocol. Show that if the network is not controllable, then the uncontrollable part

of the system is asymptotically stable.

Note: This problem refers to the controlled agreement protocol. We assume here that there may be one or

more control (anchor) nodes, and the rest of the graph (the follower graph, or floating nodes) follows the

standard agreement.

Exercise 10.5

Given an input network and assume that the input nodes’ positions can be controlled directly while the

floating nodes’ dynamics satisfy the agreement protocol. With this setup, consider the networks below,

where the input nodes are given in black, and the floating nodes in white. Which (if any) of the networks

are controllable?

G1 G2 G3 G4

(a) (b) (c) (d)

Figure 1: Which configurations are controllable?
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1.5) Prove that the matrix R(T ,C)R
T
(T ,C) (where R(T ,C) = [I T(T ,C)]) is invertible. Provide graph-

theoretic interpretations for the entries of the matrix T(T ,C)T
T
(T ,C) and TT(T ,C)T(T ,C).

Controlled Agreement

Problem 2

Consider the controlled agreement protocol studied in lecture. Prove the following theorem:

Theorem 1. The controlled agreement protocol is uncontrollable if it is input symmetric. Equivalently, the

controlled agreement protocol is uncontrollable if the floating graph admits a nonidentity automorphism for

which the input indicator vector remains invariant under its action.

Hint : Assume that the eigenvalues of Af are unique (why should we do this?). Beginning with the assumption

of input symmetry, show that if v is an eigenvector of Af that Jv is also an eigenvector (with J a permutation

matrix). Use this fact and the other algebraic conditions for controllability to show controlled agreement

protocol is uncontrollable.

Problem 3

Incidence Matrix and Edge Laplacian

1

Given the following incidence matrix,

E(G) =


1 1 0 0 0 0

−1 0 1 −1 0 0

0 −1 −1 0 1 1

0 0 0 0 −1 0

0 0 0 1 0 −1

 ,

draw the associated graph and compute the matrix T . How many cycles are in the graph? Are all the cycles

“linearly independent?” Devise an algorithm that constructs the matrix T without computing any matrix

inverses.

2

1. Prove that the non-zero eigenvalues of L(G) = E(G)E(G)T are the same as the non-zero eigenvalues of

Le(G) = E(G)TE(G).

2. Characterize the null-space of the edge Laplacian Le(G) = E(G)TE(G).

3. Find a similarity transformation matrix between the matrix Le(G) = E(G)TE(G) and the matrix[
L(G) 0

0 0

]
,

where the matrix 0 is a square matrix of appropriate size of all zeros (i.e. a matrix S such that

S−1Le(G)S is the matrix shown above). What should the size of that zero-block matrix be and what

graph theoretic property is it related to?
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Problem 4

Edge Agreement

4.1) Consider the consensus protocol over a connected graph G with spanning tree T corrupted

by both process noise w(t) at the input, and sensor noises v(t) on the relative outputs, i.e.,

Σ(G) :


ẋ(t) = u(t) + w(t)

y(t) = E(G)Tx(t) + v(t)

z(t) = E(T )Tx(t)

,

and u(t) = −E(G)y(t). What are the closed-loop dynamics for the above system? What is the

associated edge agreement protocol for this system?

4.2) For the edge agreement protocol found above, find an expression for the H2 performance

when the controlled output is z(t) = E(T )Tx(t) and for when it is z(t) = E(G)Tx(t). Comment

on the difference. )

4.3) Let G = (V, E) be the graph obtained by adding two edges to the spanning tree T = (V, Eτ );

that is, E = Eτ ∪ {e1, e2} with e1, e2 /∈ Eτ . Consider now the edge agreement protocol over the

graph G with only process noises, i.e.,

Σe(G) :

{
ẋτ (t) = −Le(T )R(T ,C)R

T
(T ,C)xτ (t) + E(T )Tw(t)

z(t) = xτ (t)
.

Derive an expression for the H2 performance and provide a graph-theoretic interpretation of

the result

Hint: Use the solution to exercise 1.5 to help with the interpretation of the result.

4.4) Consider the consensus protocol over a connected graph G corrupted by process noises.

We would like to examine the H2 performance of the edge agreement protocol for two different

possible performance output variables:

z1(t) = E(T1)Tx(t)

z2(t) = E(T2)Tx(t),

where T1 and T2 are two different spanning trees of G. Assume that in both cases, the state

equation is

ẋτ = −Le(T1)R(T1,C)R
T
(T1,C)xτ (t) + E(T1)Tw(t).

How is the H2 performance of the corresponding edge agreement problem for each performance

variable related?
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