
D. Zelazo Analysis and Control of MAS: Exercise #4

Exercise #4
Analysis and Control of Multi-Agent Systems

Problem 1

Relative Sensing Networks

1.1) Consider a collection of n agents with identical dynamics,

ẋi(t) = Axi(t) +Bwi(t)

yi(t) = Cxi(t),

for i = 1, . . . , n. The output of the networked system are the relative outputs of neighboring

agents as defined by a sensing graph G = (V, E). That is, the output is the vector z(t) ∈ R|E|

where zk(t) = yi(t) − yj(t) for k = (i, j) ∈ E. Express the collective dynamics of the entire team

in state-space form.

1.2) What is the H2 performance of the homogeneous RSN above? Among the set of all

connected graphs, what class of graphs are H2 optimal?

1.3) Recall that the H2 performance of the heterogeneous RSN is ‖Σ(G)‖22 =
∑

i=1 di‖Σi‖22. Show

that the norm can be expressed as

‖Σ(G)‖22 = ‖WE(G)‖2F

for an appropriately defined diagonal matrix W .

1.4 Consider a heterogeneous relative sensing network where the sensing graph G is generically

infinitesimally, and minimally rigid and has H2 performance ‖Σ(G)‖2. Suppose there is a new

agent Σo that joins the relative sensing network. Propose a procedure for adding the new

agent to the network such that

1. The new relative sensing network is still generically infinitesimally and minimally rigid,

2. The H2 performance of the new RSN is increased by the smallest amount possible.

Problem 2

Minimum Weight Spanning tree

2.1) For the weighted graph in Figure 1, find the minimum weight spanning tree using Kruskal’s

Algorithm. Implement Kruskal’s Algorithm in MATLAB (or similar).

2.2) Provide conditions on the weights that guarantee a unique solution to the minimum weight

spanning tree algorithm. Construct an example of a weighted graph that does not admit a

unique solution to the minimum weight spanning tree problem.

2.3) Consider the weighted graph G = (V, E ,W). Formulate the minimum weight spanning tree

problem as an integer program.

Hint: Let xe ∈ {0, 1} be the binary decision variable to include edge e ∈ E in the minimum weight tree. First,

express the objective function in terms of the decision variables xe. The integer program should include linear
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Figure 1: Find the minimum weight spanning tree

constraints that reflect all the required properties of a spanning tree. The challenging part is to find a linear

set of constraints that guarantees there are no cycles!

Problem 3

Graph Rigidity

3.1 Show that the framework (G, p0) in Figure 2 is rigid but not infinitesimally

rigid.
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Figure 2: A framework (G, p0) in R2.
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3.2 Show that adding the edge {v2, v4} to create the graph G ′ = (V , E ∪ {v2, v4})
results in the framework (G ′, p0) being infinitesimally rigid. Is the resulting graph

generically rigid?

3.3 Show how the framework in Figure 2 can be generated using the Henneberg

Construction. Can the framework in Figure 2 with the added edge {v2, v4} also

be constructed by a Henneberg Construction? If yes, show the construction,

and if not, explain why.

Problem 4

Formation Control

Consider the distance-based formation control law derived in class,

ṗi =
∑
j∼i

(
‖pi − pj‖2 − d2ij

)
(pj − pi).

Here we assume that pi(t) ∈ R2.

1. Simulate the protocol for a team of three agents with the desired formation an equilateral triangle for

a variety of initial conditions. Find a set of initial conditions where the protocol does not converge to

the desired formation.

2. Simulate the protocol for a team of 5 agents to a desired formation of your choice. Simulate for

frameworks that are infinitesimally rigid, minimally infinitesimally rigid, not rigid with full row-rank

rigidity matrix, and not rigid with rigidity matrix that is not full row rank.

3. Prove that the centroid of the formation, p = 1
n

∑|V|
i=1 pi, is an invariant quantity (i.e., a constant of

motion) for the distance-based formation control.

4. Prove that the set Mq = {p =
[
p1 · · · p|V|

]T ∈ R2|V| | pi = αiq, αi ∈ R, q ∈ R2,∀i ∈ V} is

an invariant set under the dynamics of the distance-based formation control. That is, for any initial

configuration p(0) ∈Mq, one has p(t) ∈Mq for all t ≥ 0.

Formation Control with Collision Avoidance

Consider the following potential function,

F (p) =

|V|∑
i=1

∑
j∼i

(
‖pi − pj‖2 − d2ij

)2
‖pi − pj‖2

,

with pi ∈ R2.

1. Express the associated gradient dynamical system, ṗ = −∇F (p) in a state-space form. Show that the

state-space can be expressed as a state-dependent weighted Laplacian matrix. That is,

ṗ = −(E(G)W (p)E(G)T ⊗ I2)p,

where W (p) is an appropriately chosen diagonal matrix with entries that depend on the state p.
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2. Characterize the equilibrium configurations of the dynamics. Comment on the equilibrium configura-

tions when the underlying graph is a spanning tree, and when it contains cycles.

3. Simulate the protocol for a spanning tree on 3 nodes and for a cycle on three nodes for a variety of

different initial conditions.

4. Prove that when the underlying graph is a spanning tree, the dynamics converge to specified inter

agent distances, but not necessarily to the desired ‘shape.’ Conclude also that neighboring agents will

never collide (i.e., pi = pj).
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