

Analysis and Control of Multi-Agent Systems

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

Organizational Matters

Instructor and Office Hours

Daniel Zelazo - dzelazo@technion.ac.il

Room: Pfaffenwaldring 9 Room: 1.103

office hrs: Wed. 14:00 -16:00 (or by appointment)

Teaching Assistant

Jan Maximilian Montenbruck jan-maximilian.montenbruck@ist.uni-stuttgart.de

Course Web-Page

http://www.ist.uni-stuttgart.de/education/courses/Multi-Agent2014/

Schedule

Please see website for latest information!

Organizational Matters

(suggested) Text Book

"Graph Theoretic Methods in Multiagent Networks" Mehran Mesbahi & Magnus Egerstedt Princeton University Press, 2010.

http://press.princeton.edu/titles/9230.html

Homeworks: - There will be a series of *optional* exercises that will accompany every few lectures. It is encouraged that you try to work through these.

Final Exam (July 23, 15:00-16:30): - A comprehensive written exam.

Multi-Agent Systems are systems composed of multiple interacting dynamic units.

biologically inspired...

shimmering of giant honeybees Kastberger G, Schmelzer E, Kranner I (2008) Social Waves in Giant Honeybees Repel Hornets. PLoS ONE 3(9): e3141.

Multi-Agent Systems are systems composed of multiple interacting dynamic units.

biologically inspired...

synchronizing fireflies

Buck, J and Buck, E (1968) Mechanism of Rhythmic Synchronous Flashing of Fireflies. Science 22 159(3821):1319-1327.

Multi-Agent Systems are systems composed of multiple interacting dynamic units.

biologically inspired...

Aggregation of Dictyostelium Goldbeter, Bulletin of Mathematical Biology 2006

Multi-Agent Systems are systems composed of multiple interacting dynamic units.

Synchronization

An agreement by multiple systems on a common state

Coordination

Managing of multiple interacting systems to achieve a team objective

Course Goals

Course Goals

- Modeling of multi-agent systems
 - dynamics
 - interconnections
- Analysis of multi-agent systems
 - stability and performance
 - convergence
- •Synthesis of multi-agent systems
 - control
 - interconnection design
- Applications of multi-agent systems
 - formations

Course Goals

Course Goals

- Graph Theory
 - combinatorics
 - algebraic graph theory
- Consensus and Agreement Protocols
 - continuous and discrete systems
 - undirected/directed communication
 - linear and non-linear systems, switched systems
- Networks as Systems
 - graph theory ←→ systems theory

Course Goals

Course Schedule

June 30 - July 23

	Montag	Dienstag	Mittwoch	Donnerstag	Freitag
Week 1	- Introduction to MAS - Graph Theory	- Linear Consensus I - Gradient Systems	No Class	- Linear Consensus II	- Control of Networks
Week 2	- Performance of Networks	- Design of Networks	No Class	- Formation Control I	Formation Control IIConclusions and Outlook
Week 3	No Class				
Week 4	No Class	No Class	Final Exam 15:00 - 16:30	No Class	No Class

$$\dot{x}_1(t) = f(x_1(t), u_1(t), t)$$

trajectory tracking robust control optimal estimation

optimal control nonlinear control model predictive control

linear non-linear CT, DT hybrid stochastic

• • •

$$\dot{x}_1(t) = f(x_1(t), u_1(t), t)$$

$$\dot{x}_2(t) = f(x_2(t), u_2(t), t)$$

$$\dot{x}_3(t) = f(x_3(t), u_3(t), t)$$

$$\dot{x}_1(t) = f_1(x_1(t), u_1(t), t)$$

$$\dot{x}_2(t) = f_2(x_2(t), u_2(t), t)$$

$$\dot{x}_3(t) = f_1(x_3(t), u_3(t), t)$$

omnidirectional
vision
radar
relative sensing
range measurements

• • •

Networked Dynamic Systems

Why is this hard?

- large-scale
- complexity & scalability
- variety of interconnections
- •delays, bandwidth, etc...

We need a new and dedicated approach for studying these systems!

Networked Dynamic Systems

