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Introduction to Graph Theory
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Abstraction Using Graphs

T2(t) = fa(wa(t), uz(t),t)

sz
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Abstraction Using Graphs

=

nodes

edges can be directed or undirected
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Graph Theory

Definition
A Graph is an ordered pair comprised of

a set of vertices (or nodes), and a set of
edges (or links)

2O™M NPLINIMIXK NDTIND NLPON Analysis and Control of Multi-Agent Systems
Faculty of Aerospace Engineering University of Stuttgart, 2014

=



Graph Theory

Notations

agraph G = (V, &)
vertex set } = {vl, . ,Un}
edge set & C [V]*

all 2-element subsets

» undirected graphs
- directed graphs
- weighted graphs
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Graph Theory

Example: an undirected graph

() Vs
'o— %
_ ./ \_/ Y = {”01,122,713,?14,?15}

E = {{v1,v2},{v1,v3},{v2,v4},
{U27 U5}7 {U37 U4}}

[V]2 — {{Ulv 7}2}7 {Ulv ?}3}, {1)1, 2}4}7 {Ulv 715}7

g — (V7 g) {v2,v3}, {v2, va},{v2, 05}, {vs, va},

{vs,v5},{va, v5}}
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Graph Theory

Example: an undirected graph

U1 Uy vs,  more terminology...
(\a.—/} /\‘_//\ /\Jl .
- adjacent nodes
U1 ~ U2
Y 5 . Lo
'1;3</' va a npde is incident to an edge
» neighborhood

G=V¢) N (v) = {v; € V| {vi,0;} € £}
N,

7
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Graph Theory

Example: graphs can model social interactions
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Graph Theory

Example: a directed graph (digraph)
U1 U

) »b V = {v1,v2,03,04}
E = {(71177]2)7 (U3702)7 (03704)}

2 SQ ’U’p » edges are ordered pairs with a

head (initial) node and a tail

g — (V’ 8) (terminal) node

» edges are said to have an

orientation
D=(V,¢)
o
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Graph Theory

Definition
A (simple) path is a sequence of distinct

vertices such that consecutive vertices
are adjacent.

P(v1,v7) = 0109020197
U3
- the path length is the number
of edges traversed e
» there can be multiple (or no!)
naths between two nodes
* Shortest Path
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Graph Theory

Example: Shortest Path Problem

Given a graph with two nodes

identified as the ‘start’ node and

the ‘terminal’ node, find the
shortest length path between
them

Dijkstra’s algorithm
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Graph Theory

Undirected Graphs
connected

for every pair of vertices, there
exists a path connecting them

(78] ‘1}2 (28] Vo

Vg Vi~ U3 U4

V1 Vo V1 Vo

- r >

disconnected

U3 U4 v U4

Directed Graphs

strongly
connected

for every pair of vertices, there

exists a directed path connecting
them

weakly
connected

if the graph obtained by replacing
each directed edge with an
undirected edge is connected

~
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Graph Theory

Undirected Graphs Directed Graphs
Node Degree In-Node Degree
d; = ‘N(U@)‘ Number of edges entering a node
Out-Node Degree
U1 Vg Number of edges leaving a node

o—>b
di" =0

dl’n — 2
2
O ) dgHt =2
U3 Ugq4— 3
o A
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Graph Theory

Graphs are a set-theoretic object!

Subgraphs V' = {v1,v2,v5,v8, 07} CV
§ = (va) & ce
g/ _ (V/7g/) C g

Us

U1 ,O

C/flﬁ
V={v1,...,vs} Vs

=
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Graph Theory

Graphs are a set-theoretic object!

Induced Subgraphs
g=WW,¢) Gs = (5,€s) C G

V9 Ve
S = {’1)2, U4, Vs, US}

£g = {{'ui,'vj} S 8|'uz-,vj S S}

V:{Ul,...,vg}
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Graph Theory

Graphs are a set-theoretic object!

Induced Subgraphs boundary

Gg=VE£) 0Gs = (05,&s3)
Uiy

U7

S = {vieVv; ¢S5, Jv; €8st {viv;} €}
= {vi,v3,v7}
V={vy,...,vg} Evs = {{vi,v;} € E|v;,v; € 8S)
P
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Graph Theory

Graphs are a set-theoretic object!

Induced Subgraphs closure
G = (V, 8) cl gs

Gs U JGg

Vs
I
( }——"

s -‘__.' l

'l ‘.-'
/
' ~ 4

V={v1,...,vs}
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Graph Theory

some special graphs...

Trees and Cycles

A cycle is a connected graph A tree is a connected graph
where each node has degree 2 containing no cycles

Cs
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Graph Theory

some special graphs...

Trees and Cycles

A graph contains cycles if there A spanning tree of a connected
is a subgraph that is a cycle graph is a subgraph that is a

U7

tree
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Graph Theory

some special graphs...

Forests A spanning forest is a maximal
- acyclic subgraph
(g
v10
U10
U2
(V] Vo
V9 U3
(5 Vg
U1 Ve
Us Ug Y1
Vs Vs
U4
Y U4
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Graph Theory

some special graphs...

Star Graph

Sio \\// |
75

Complete Graph
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Graph Theory

some special graphs...

Peterson Graph
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Graph Theory

:

so many named graphs!

Elingham-Horton 78-
graph

AT T
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Harries graph
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Graph Theory

Example: All square matrices have a graph
representation

3 3 1 1 0
0O 0 0 0 10
M=1|2 1 0 0 1 )
0O 0 0 0 O
0 1.0 0 0

Graph of a Matrix M € R™*"
G(M)= (V(M),E(M))
|V(M)| —n €= (Uq;,vj) - E(M) & [M]w £ ()
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Graph Theory

Definition

A matrix M € R™*"™ is said to be irreducible
if there does not exist a permutation matrix

P and an integer r such that

PIMP =

B C
0 D |’

with B € R™<", C' € R"™*" " and D € R» """,

I
M = i 3 4 )
irreducible

0 0
_12_

reducible P =?

A =
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Graph Theory

=

Theorem

Let M € R"*™. The following are equivalent:
1. M is irreducible,

2. The digraph associated with M (G(M))
is strongly connected.
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Graph Theory

Proof
M is irreducible = G(M) is strongly connected

assume the graph is not strongly connected
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Graph Theory

Example: Structured Linear System

A structured linear system is a description of a dynamic
system that considers only the interaction and influence
between system states, control, and outputs independent
of any realization of parameter values

AL
% ! — 0 —mpg —K7 0 (9 + I?l U
L M Rrmme L Rpyyme
9 (mp+m0)g Kl 9 — N
- 0 mely Rmmel, 0 - 7 4 L Rmmely -
x
B I 0 0 O 0
Y - 0 1 0 0|]|a
= 9 —
=
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Graph Theory

Example: Structured Linear System

T 0 0 1 071 r1 ., 1 -0 7 - -
I I
1o 0 0 0 1|, 0 A A B
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Graph Theory

Example: Structured Linear System

T 0 0 x O T 0
d 0 10 0 0 « v 0
dtl 2| |0 x x 0 T T « |
0 0 ox x 0|0 ok
Definition

A system (A, B) is structurally controllable
if there exists a system structurally equivalent
to (A, B) which is controllable in the usual sense.
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Graph Theory

Example: Structured Linear System
Theorem (Lin 74

The following statements for a structured system
(A, B) are equivalent:

e (A, B) is structurally controllable

e In the graph G(A, B), there exists a
disjoint union of cacti that covers all
the state vertices.

. ..< ..z f». A “cactus” with three “buds”
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Graph Theory

Example: Structured Linear System
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Graph Theory

Example: Seven Bridges of Konigsberg (Euler 1735)

s there a walk through the city of Konigsberg that crosses
each bridge once and on/y once?
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Algebraic Graph Theory

Graphs can be described using matrices
Degree Matrix

2 0 0 0 0 . .
02 00 0 diagonal matrix
AG)=|00 2 0 0 with degree of
00 0 3 0 each node on
'04 0 0 0 0 1 diagonal
o 20 e
Adjacency Matrix
0 0 1 1 0] . .
U3 00 1 1 0 symmetric matrix
AG)=|1 10 0 0 encoding adjacency
1 1.0 0 1 relationship of nodes
000 1 0 in graph
e ) B
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Algebraic Graph Theory

=

Lemma

Let G be a graph with adjacency matrix
A(G). The number of walks from node v;

to v; of length r is [A(G)"]s;
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Algebraic Graph Theory

=

Corollary
Let G be a graph with e edges,

t triangles, and adjacency matrix A(G).

Then
e trace A(G) =0
o trace A(G)? = 2e

o trace A(G)® = 6t
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Algebraic Graph Theory

Graphs can be described using matrices

V4 Incidence Matrix
E(G) RIVIXIE
ol 720 0"
A
1 -1 0 0 0
Y 0 0O -1 -1 0
3 E@Q=!0 1 0 1 0
-1 0 1 0 1
assign arbitrary orientation o o0 0 0 -1
to each edge
' o 4
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Algebraic Graph Theory

Theorem

Let G be a graph with n vertices,
¢ connected components, and an
arbitrary orientation assigned to

each edge. Then rank F(G) =n — c.

Proof

=

Suppose there exists an x € R™ such that ! E(G) = 0.
If (u,v) € £(G), this implies that =, — z, = 0. If we
consider x as a function on the nodes of the graph,
then it must be constant on any connected component
of G. By assumption, there are ¢ such components.
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Algebraic Graph Theory

Example: Relative Sensing Networks

Interferometry is a technique used for imaging in deep space.
Rather than using 1 large (and expensive!) telescope, a team

of smaller (and cheaper!) sensors can achieve the same goal.
This requires high accuracy and precision of relative spacing

between satellites.
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Algebraic Graph Theory

The Combinatorial (graph) Laplacian Matrix

L(9) A(G) — A(G)
E(G)E(G)"

V1 2 5
\Z
"9 0 -1 -1
0 2 -1 -1
U-
3 LG =] -1 -1 2 0

-1 -1 0 3
0 0 0 -1

O O O O
L |
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Algebraic Graph Theory

The Combinatorial (graph) Laplacian Matrix
and Spectral Graph Theory L(G) € R"*™

for a connected graph, there is L(g) 1 =0

a single eigenvalue at the origin o

0=2A1(9) < A2(G) < ... < An(9)

algebraic connectivity of graph )\
2(G

Fiedler Eigenvalue
trace L(G) = 2|&]
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Algebraic Graph Theory

=

Theorem

The graph G is connected
if and only if A\2(G) > 0.

Theo FEIM (Matrix Tree Theorem)

Let 7(G) be the number of spanning trees in G. Then

T(g) = det L(Q)(Z])
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