

Analysis and Control of Multi-Agent Systems

Daniel Zelazo Faculty of Aerospace Engineering Technion-Israel Institute of Technology

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Introduction to Graph Theory

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Abstraction Using Graphs

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Abstraction Using Graphs

edges can be *directed* or *undirected*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Definition

A *Graph* is an ordered pair comprised of a set of vertices (or nodes), and a set of edges (or links)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Notations a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ vertex set $\mathcal{V} = \{v_1, \dots, v_n\}$ edge set $\mathcal{E} \subseteq [\mathcal{V}]^2$

all 2-element subsets

- undirected graphs
- directed graphs
- weighted graphs

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: an *undirected* graph

Example: an *undirected* graph

more terminology...

• adjacent nodes

 $v_1 \sim v_2$

a node is *incident* to an edge *neighborhood*

$$\mathcal{N}(v_i) = \{ v_j \in \mathcal{V} \mid \{ v_i, v_j \} \in \mathcal{E} \}$$
$$\mathcal{N}_{v_i}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: graphs can model social interactions

Example: a *directed* graph (digraph)

- edges are *ordered pairs* with a *head* (*initial*) node and a *tail* (*terminal*) node
- edges are said to have an *orientation*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

 $\mathcal{D} = (\mathcal{V}, \mathcal{E})$

Definition

A (simple) **path** is a sequence of distinct vertices such that consecutive vertices are adjacent.

$$P(v_1, v_7) = v_1 v_9 v_2 v_{10} v_7$$

- the *path length* is the number of edges traversed
- there can be multiple (or no!) paths between two nodes
 - * Shortest Path

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 v_7

Example: Shortest Path Problem

Given a graph with two nodes identified as the 'start' node and the 'terminal' node, find the shortest length path between them

Dijkstra's algorithm

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Undirected Graphs

connected

for every pair of vertices, there exists a path connecting them

disconnected

Directed Graphs

strongly connected

for every pair of vertices, there exists a *directed* path connecting them

weakly connected

if the graph obtained by replacing each directed edge with an undirected edge is connected

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Undirected Graphs

Node Degree

Directed Graphs

In-Node Degree

 $d_i = |\mathcal{N}(v_i)|$

Number of edges entering a node

Out-Node Degree

Number of edges *leaving* a node

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graphs are a *set-theoretic* object!

Subgraphs

 $\mathcal{V} = \{v_1, \ldots, v_8\}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $\mathcal{V}' = \{v_1, v_2, v_5, v_8, v_7\} \subset \mathcal{V}$ $\mathcal{E}' \subset \mathcal{E}$ $\mathcal{G}' = (\mathcal{V}', \mathcal{E}') \subset \mathcal{G}$ v_5 v_2 v_7

Graphs are a *set-theoretic* object!

Induced Subgraphs

 $\mathcal{G}=(\mathcal{V},\mathcal{E})$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graphs are a *set-theoretic* object!

Induced Subgraphs

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering boundary $\partial \mathcal{G}_S = (\partial S, \mathcal{E}_{\partial S})$ $v_1 \bigcirc$ $v_3 \bigcirc v_7$

 $\begin{array}{rcl} \partial S &=& \{v_i \in \mathcal{V} | v_i \notin S, \, \exists v_j \in S \ s.t. \ \{v_i, v_j\} \in \mathcal{E} \} \\ &=& \{v_1, v_3, v_7\} \end{array}$

$$\mathcal{E}_{\partial S} = \{\{v_i, v_j\} \in \mathcal{E} \,|\, v_i, v_j \in \partial S\}$$

closure

Graphs are a *set-theoretic* object!

Induced Subgraphs

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering $\operatorname{cl} \mathcal{G}_S = \mathcal{G}_S \cup \partial \mathcal{G}_S$

some special graphs...

Trees and Cycles

A *cycle* is a connected graph where each node has degree 2

Ŵ

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering A *tree* is a connected graph containing no cycles

some special graphs...

Trees and Cycles

A graph contains *cycles* if there is a subgraph that is a cycle

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering A *spanning tree* of a connected graph is a subgraph that is a tree o^{v_7}

some special graphs...

Forests

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A *spanning forest* is a maximal acyclic subgraph

 v_4

some special graphs...

Star Graph

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

some special graphs...

Peterson Graph

Payley Graph

 v_4

 v_5

 v_3

 v_7

 v_6

Wheel Graph

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Analysis and Control of Multi-Agent Systems University of Stuttgart, 2014

Bipartite Graph

so many named graphs!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: All square matrices have a graph representation

$$|\mathcal{V}(M)| = n$$
 $e = (v_i, v_j) \in \mathcal{E}(M) \Leftrightarrow [M]_{ij} \neq 0$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Definition

A matrix $M \in \mathbb{R}^{n \times n}$ is said to be *irreducible* if there does not exist a permutation matrix P and an integer r such that

$$P^T M P = \left| \begin{array}{cc} B & C \\ 0 & D \end{array} \right|$$

with $B \in \mathbb{R}^{r \times r}$, $C \in \mathbb{R}^{r \times n-r}$, and $D \in \mathbb{R}^{n-r \times n-r}$.

$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$$

reducible $P = ?$

Theorem

- Let $M \in \mathbb{R}^{n \times n}$. The following are equivalent:
- 1. M is irreducible,
- 2. The digraph associated with $M(\mathcal{G}(M))$ is strongly connected.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proof

M is irreducible $\Rightarrow \mathcal{G}(M)$ is strongly connected assume the graph is *not* strongly connected

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: Structured Linear System

A *structured linear system* is a description of a dynamic system that considers only the interaction and influence between system states, control, and outputs independent of any realization of parameter values

$$\frac{d}{dt} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{-m_p g}{m_c} & \frac{-K_1^2}{R_m m_c} & 0 \\ 0 & \frac{(m_p + m_c)g}{m_c I_p} & \frac{K_1^2}{R_m m_c I_p} & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{K_1}{R_m m_c} \\ \frac{-K_1}{R_m m_c I_p} \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: Structured Linear System

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: Structured Linear System

$$\frac{d}{dt} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \\ 0 & * & * & 0 \\ 0 & * & * & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ * \\ * \end{bmatrix} u$$

Definition

A system (A, B) is structurally controllable if there exists a system structurally equivalent to (A, B) which is controllable in the usual sense.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: Structured Linear System

Theorem [Lin '74]

The following statements for a structured system (A, B) are equivalent:

- (A, B) is structurally controllable
- In the graph $\mathcal{G}(A, B)$, there exists a disjoint union of cacti that covers all the state vertices.

A "cactus" with three "buds"

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: Structured Linear System

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: Seven Bridges of Königsberg (Euler 1735)

Is there a *walk* through the city of Königsberg that crosses each bridge once and *only* once?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graphs can be described using matrices

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Lemma

Let \mathcal{G} be a graph with adjacency matrix $A(\mathcal{G})$. The number of walks from node v_i to v_j of length r is $[A(\mathcal{G})^r]_{ij}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Corollary

Let \mathcal{G} be a graph with e edges, t triangles, and adjacency matrix $A(\mathcal{G})$. Then

- trace $A(\mathcal{G}) = 0$
- trace $A(\mathcal{G})^2 = 2e$
- trace $A(\mathcal{G})^3 = 6t$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graphs can be described using matrices

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Theorem

Let \mathcal{G} be a graph with n vertices, c connected components, and an arbitrary orientation assigned to each edge. Then rank $E(\mathcal{G}) = n - c$.

Proof

Suppose there exists an $x \in \mathbb{R}^n$ such that $x^T E(\mathcal{G}) = 0$. If $(u, v) \in \mathcal{E}(\mathcal{G})$, this implies that $x_u - x_v = 0$. If we consider x as a function on the nodes of the graph, then it must be constant on any connected component of \mathcal{G} . By assumption, there are c such components.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Example: Relative Sensing Networks

Interferometry is a technique used for imaging in deep space. Rather than using 1 large (and expensive!) telescope, a team of smaller (and cheaper!) sensors can achieve the same goal. This requires high accuracy and precision of *relative spacing* between satellites.

$$\dot{x}_i(t) = f(x_i(t), u_i(t), t)$$

$$e_k = \{v_i, v_j\} \in \mathcal{E}$$

$$y_k(t) = x_i(t) - x_j(t)$$

$$\mathbf{y}(t) = E(\mathcal{G})^T \mathbf{x}(t)$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Combinatorial (graph) Laplacian Matrix

$$L(\mathcal{G}) = \Delta(\mathcal{G}) - A(\mathcal{G}) = E(\mathcal{G})E(\mathcal{G})^T$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Combinatorial (graph) Laplacian Matrix and Spectral Graph Theory $L(\mathcal{G}) \in \mathbb{R}^{n \times n}$

for a connected graph, there is a single eigenvalue at the origin

$$L(\mathcal{G})\mathbf{1}=0$$

$$0 = \lambda_1(\mathcal{G}) \le \lambda_2(\mathcal{G}) \le \ldots \le \lambda_n(\mathcal{G})$$

algebraic connectivity of graph *Fiedler Eigenvalue*

h
$$\lambda_2(\mathcal{G})$$

trace $L(\mathcal{G}) = 2|\mathcal{E}|$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Theorem

The graph \mathcal{G} is connected if and only if $\lambda_2(\mathcal{G}) > 0$.

Theorem (Matrix Tree Theorem)

Let $\tau(\mathcal{G})$ be the number of spanning trees in \mathcal{G} . Then

$$\tau(\mathcal{G}) = \det L(\mathcal{G})_{(ij)}.$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering