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Introduction to Graph Theory



 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Analysis and Control of Multi-Agent Systems 
University of Stuttgart, 2014

ẋ2(t) = f2(x2(t), u2(t), t)

ẋ1(t) = f1(x1(t), u1(t), t)

Abstraction Using Graphs
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Abstraction Using Graphs

nodes

edges

edges can be directed  or undirected
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Graph Theory

ẋ2(t) = f2(x2(t), u2(t), t)

ẋ1(t) = f1(x1(t), u1(t), t)

Definition
A Graph is an ordered pair comprised of 
a set of vertices (or nodes), and a set of  
edges (or links)
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Graph Theory

Notations

G = (V, E)a graph

vertex set V = {v1, . . . , vn}
edge set E � [V]2

all 2-element subsets

• undirected graphs 
• directed graphs 
• weighted graphs
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Graph Theory

Example: an undirected graph

V = {v1, v2, v3, v4, v5}

E = {{v1, v2}, {v1, v3}, {v2, v4},
{v2, v5}, {v3, v4}}

[V]2 = {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5},
{v2, v3}, {v2, v4}, {v2, v5}, {v3, v4},

{v3, v5}, {v4, v5}}
G = (V, E)
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Graph Theory

Example: an undirected graph

G = (V, E)

more terminology…

• adjacent nodes 
 

• a node is incident to an edge 
• neighborhood

v1 ⇠ v2

N (vi) = {vj � V | {vi, vj} � E}
Nvi
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Graph Theory

Example: graphs can model social interactions
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Graph Theory

Example: a directed graph (digraph)

G = (V, E)

V = {v1, v2, v3, v4}

E = {(v1, v2), (v3, v2), (v3, v4)}

• edges are ordered pairs with a 
head (initial) node and a tail 
(terminal) node 

• edges are said to have an  
orientation

D = (V, E)
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Definition
A (simple) path is a sequence of distinct 
vertices such that consecutive vertices  
are adjacent.

Graph Theory

P (v1, v7) = v1v9v2v10v7

• the path length is the number 
of edges traversed 

• there can be multiple (or no!) 
paths between two nodes 

✴ Shortest Path

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
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Graph Theory

Example: Shortest Path Problem

Given a graph with two nodes  
identified as the ‘start’ node and  
the ‘terminal’ node, find the 
shortest length path between  
them

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

Dijkstra’s algorithm
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Graph Theory
Undirected Graphs Directed Graphs

connected
for every pair of vertices, there 
exists a path connecting them

strongly 
connected
for every pair of vertices, there 
exists a directed path connecting 
them

weakly 
connected
if the graph obtained by replacing 
each directed edge with an 
undirected edge is connecteddisconnected
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Graph Theory
Undirected Graphs Directed Graphs

Node Degree

di = |N (vi)|

In-Node Degree

Number of edges entering a node

Out-Node Degree

Number of edges leaving a node

din1 = 0

din2 = 2

dout3 = 2
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Graph Theory
Graphs are a set-theoretic object!

Subgraphs

v1

v2

v3

v4

v5

v6

v7

v8

V = {v1, . . . , v8}

G = (V, E)

V 0 = {v1, v2, v5, v8, v7} ⇢ V

E 0 ⇢ E
G0 = (V 0, E 0) ⇢ G

v1

v2

v7

v8

v5
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Graph Theory
Graphs are a set-theoretic object!

Induced Subgraphs

V = {v1, . . . , v8}
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Graph Theory
Graphs are a set-theoretic object!

Induced Subgraphs

V = {v1, . . . , v8}

boundary
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Graph Theory
Graphs are a set-theoretic object!

Induced Subgraphs

V = {v1, . . . , v8}

closure
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Graph Theory
some special graphs…

Trees and Cycles

A cycle is a connected graph 
where each node has degree 2

C5

A tree is a connected graph 
containing no cycles
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Graph Theory
some special graphs…

Trees and Cycles

A graph contains cycles if there 
is a subgraph that is a cycle

A spanning tree of a connected 
graph is a subgraph that is a  
tree

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
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Graph Theory
some special graphs…

Forests A spanning forest is a maximal 
acyclic subgraph

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
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Star Graph Complete Graph

k-Regular GraphPath Graph

some special graphs…

S10

Graph Theory

P10

K10

4-regular
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Peterson Graph Payley Graph

Bipartite GraphWheel Graph

some special graphs…

Graph Theory
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so many named graphs!

Graph Theory
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Graph Theory

Example: All square matrices have a graph 
representation

M =

2

66664

3 3 1 1 0
0 0 0 0 10
2 1 0 0 1
0 0 0 0 0
0 1 0 0 0

3

77775

Graph of a Matrix M 2 Rn⇥n

G(M) = (V(M), E(M))

|V(M)| = n e = (vi, vj) 2 E(M) , [M ]ij 6= 0
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Graph Theory

Definition
A matrix M 2 Rn⇥n

is said to be irreducible
if there does not exist a permutation matrix

P and an integer r such that

PTMP =


B C
0 D

�
,

with B 2 Rr⇥r
, C 2 Rr⇥n�r

, and D 2 Rn�r⇥n�r
.

M =


1 2
3 4

�

irreducible reducible P =?

A =


0 0
1 2

�



 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Analysis and Control of Multi-Agent Systems 
University of Stuttgart, 2014

Graph Theory

Theorem

Let M 2 Rn⇥n
. The following are equivalent:

1. M is irreducible,

2. The digraph associated with M (G(M))

is strongly connected.
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Graph Theory

Proof
M is irreducible ) G(M) is strongly connected

assume the graph is not strongly connected

D. Zelazo Networked Dynamic Systems (086722): Homework #1

We will prove here that a square matrix M is irreducible if and only if G(M) is strongly connected. First,
we will show the direction ); we will prove this via contradiction.

M is irreducible ) G(M) is strongly connected
First, assume that G(M) = (V(M), E(M)) is not strongly connected. This implies that there must exist
at least one pair of nodes u, v 2 V(M) such that there does not exist a directed path from v to u. This
observation will allow us to define 3 special subsets of the node-set V(M), defined as follows. Let,

W (u) = {s 2 V(M) | there exists a directed path from s to u} [ {u},
R(v) = {s 2 V(M) | there exists a directed path from v to s} [ {v},

Q(u, v) = V(M) \ (W (u) [R(v)).

v

W (u)

R(v)

Q(u, v)

Figure 1: A sketch of the graph used for the proof.

Page 6 of 17
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Graph Theory

Example: Structured Linear System
A structured linear system is a description of a dynamic 
system that considers only the interaction and influence 
between system states, control, and outputs independent 
of any realization of parameter values

d
dt

2

664

x
�
ẋ
�̇

3

775 =

2

6664

0 0 1 0
0 0 0 1

0 �mpg
mc

�K2
1

Rmmc
0

0 (mp+mc)g
mcIp

K2
1

RmmcIp
0

3

7775

2

664

x
�
ẋ
�̇

3

775+

2

664

0
0
K1

Rmmc�K1
RmmcIp

3

775u

y =


1 0 0 0
0 1 0 0

�
2

664

x
�
ẋ
�̇

3

775
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Graph Theory

Example: Structured Linear System

y1

y2

x

ẋ

✓̇

✓

u

d
dt

2

664

x
�
ẋ
�̇

3

775 =

2

6664

0 0 1 0
0 0 0 1

0 �mpg
mc

�K2
1

Rmmc
0

0 (mp+mc)g
mcIp

K2
1

RmmcIp
0

3

7775

2

664

x
�
ẋ
�̇

3

775+

2

664

0
0
K1

Rmmc�K1
RmmcIp

3

775u

y =


1 0 0 0
0 1 0 0

�
2

664

x
�
ẋ
�̇

3

775

V = {u, x, ẋ, �, �̇, y1, y2}

M =


A B
C 0

�

G(M)
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Graph Theory

Example: Structured Linear System

d

dt

2

664

x

✓

ẋ

✓̇

3

775 =

2

664

0 0 ⇤ 0
0 0 0 ⇤
0 ⇤ ⇤ 0
0 ⇤ ⇤ 0

3

775

2

664

x

✓

ẋ

✓̇

3

775+

2

664

0
0
⇤
⇤

3

775u

Definition
A system (A,B) is structurally controllable

if there exists a system structurally equivalent

to (A,B) which is controllable in the usual sense.



 הפקולטה להנדסת אוירונוטיקה וחלל
Faculty of Aerospace Engineering

Analysis and Control of Multi-Agent Systems 
University of Stuttgart, 2014

Graph Theory

Example: Structured Linear System

of buds B
1

,B
2

, . . . ,B
`

; the digraph CG = S [
�
[`

j=1

B
j

�
is called a cactus if for any

i 2 N
`

, the tail of the distinguished edge of B
i

is not the top of S, and is the only

vertex belonging to B
i

and S [
�
[i�1

j=1

B
j

�
. Fig. 2.8 gives an illustration for the case

` = 3.

Figure 2.8: A cactus with three buds.

Theorem 2.1. [65,72] The following statements for a structured system (A, B) are

equivalent.

i. (A, B) is structurally controllable.

ii. [A | B] is irreducible and its generic rank is n.

iii. In G(A, B), there exists a disjoint union of cacti that covers all state vertices.

iv. In G(A, B), every state vertex is the end vertex of a U-rooted path, and there

exists a disjoint union of a U-rooted path family and a cycle family that covers

all state vertices.

Using this theorem, one can determine if a linear time-invariant (LTI) system

with a state-space representation of the standard form (2.1) is structurally control-

lable. It is to be noted that analogous results hold for structural observability [72].

17

A “cactus” with three “buds”

Theorem [Lin ’74]

The following statements for a structured system

(A,B) are equivalent:

• (A,B) is structurally controllable

• In the graph G(A,B), there exists a

disjoint union of cacti that covers all

the state vertices.
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Graph Theory

Example: Structured Linear System

y1

y2

x

ẋ

✓̇

✓

u

d
dt

2

664

x
�
ẋ
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3
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2
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Graph Theory

Example: Seven Bridges of Königsberg (Euler 1735)

Is there a walk through the city of Königsberg that crosses 
each bridge once and only once?
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Algebraic Graph Theory

Graphs can be described using matrices
Degree Matrix

Adjacency Matrix

!
diagonal matrix  
with degree of 
each node on  
diagonal

symmetric matrix 
encoding adjacency 
relationship of nodes 
in graph
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Algebraic Graph Theory

Lemma

Let G be a graph with adjacency matrix

A(G). The number of walks from node vi
to vj of length r is [A(G)r]ij
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Algebraic Graph Theory
Corollary
Let G be a graph with e edges,

t triangles, and adjacency matrix A(G).
Then

• traceA(G) = 0

• traceA(G)2 = 2e

• traceA(G)3 = 6t

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
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Algebraic Graph Theory

Graphs can be described using matrices

Incidence Matrix

assign arbitrary orientation 
to each edge

E(G) � R|V|�|E|
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Algebraic Graph Theory

Theorem
Let G be a graph with n vertices,

c connected components, and an

arbitrary orientation assigned to

each edge. Then rankE(G) = n� c.

Proof
Suppose there exists an x 2 Rn

such that x

T
E(G) = 0.

If (u, v) 2 E(G), this implies that xu � xv = 0. If we

consider x as a function on the nodes of the graph,

then it must be constant on any connected component

of G. By assumption, there are c such components.
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Algebraic Graph Theory

Example: Relative Sensing Networks
Interferometry is a technique used for imaging in deep space. 
Rather than using 1 large (and expensive!) telescope, a team 
of smaller (and cheaper!) sensors can achieve the same goal.   
This requires high accuracy and precision of relative spacing  
between satellites.

ẋi(t) = f(xi(t), ui(t), t)

yk(t) = xi(t)� xj(t)

ek = {vi, vj} 2 E

y(t) = E(G)Tx(t)
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Algebraic Graph Theory

The Combinatorial (graph) Laplacian Matrix

L(G) = �(G)�A(G)
= E(G)E(G)T
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Algebraic Graph Theory
The Combinatorial (graph) Laplacian Matrix 
and Spectral Graph Theory

L(G) � Rn⇥n

for a connected graph, there is   
a single eigenvalue at the origin L(G)1 = 0

0 = �1(G) � �2(G) � . . . � �n(G)

algebraic connectivity of graph 
Fiedler Eigenvalue �2(G)

traceL(G) = 2|E|
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Algebraic Graph Theory

Theorem
The graph G is connected

if and only if �2(G) > 0.

Theorem (Matrix Tree Theorem)

Let ⌧(G) be the number of spanning trees in G. Then

⌧(G) = det L(G)(ij).


