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Algebraic Graph Theory

Theorem. A graph G is connected Theorem. A matriz M s irreducible
if and only if X\2(G) > 0. if and only if G(M) is strongly connected.
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Linear Algebra is the Key!

modeling networked systems modeling (linear) dynamical systems

e w(t) = fz(t), u(l))
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Linear Algebra
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LInear Agreement

sensing topology
induces a graph

gV, &)

satellites can sense
relative attitude

E(G)" x(t)

distribute relative measurements
to generate control

E(G)E(G)" =(t)

attitude consensus for satellites

Consensus Dynamics

0

= —L(G)x(t)
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LInear Agreement

2 perspectives

e T distributed
output feedback
E(G) |
z(t) z(t)
A5
N Z distributed

state feedback
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LInear Agreement

Consensus Dynamics
©(t) = —L(G)x(t)

analysis

x(t) = e L9tz (0)

diagonalize L(G) = UA(G)U*

n—1 1
—Ap—ia1t T T
x(t) = E e~ ‘it (uu; )z (0) 11" 2(0)
n
1=1
. 1.+
lim 2(t) = —1172(0)
t— 00 n
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LInear Agreement

Consensus Dynamics

#(t) = —L(G)a(t)

Definition

=

The Agreement Set A C IR™ is the subspace span{1},

A={zeR" |z; =x;,Vi,j}

. |
lim z(t) = —11"z(0) € A
{— 00 n
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LInear Agreement

Consensus Dynamics

o(t) = —L(G)x(1)

Theorem

The linear agreement protocol converges to the
agreement set from any initial condition if and

only if A\o(G) > 0. Furthermore, A>(G) dictates
the rate of convergence.
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LInear Agreement

Consensus Dynamics

o(t) = —L(G)x(1)

Corollary

=

The linear agreement protocol converges to the
agreement set from any initial condition if and
only if the underlying graph contains

a spanning tree.
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LInear Agreement

a constant of motion is a quantity that is conserved
for all trajectories of a dynamical system

dor o7 )
(1T (1)) = 1T L(G)a(t) = 0

# 17 (2(t) — 2(0)) = 0, V¢

the centroid of the system states
is a constant of motion for the
agreement protocol!
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radient Dynamical Systems
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Lyapunov Stability

(review)
consider an autonomous dynamical system

M 2(t) = f2(t)) |
phase portrait

f W —=R"
W C R"™ is an open subset

f € C?  twice differentiable
r(t) € R”

a pendulum

Definition O+60+sinf =0

The point T € W is an equilibrium point

of (1) if f(T) = 0.
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Lyapunov Stability

(review)
consider an autonomous dynamical system

M x(t) = f(x(t))

Theorem

Let T € W be an equilibrium for (1). Let V : U — R be a
continuous function defined on a neighborhood U C W of
z, differentiable on U \ {T}, such that

(Lyapunov (a) V(z)=0and V(z) >0 for all z € U, x # 7,

function)

(b) V<0in U\ {Z}.
Then 7 is stable. Furthermore, if also

(strict Lyapunov (c) V <0inU \ {Z},

function)

then 7 is asymptotically stable.

D5 NPWLININMNX NDTIND NL,MPaAN Analysis and Control of Multi-Agent Systems
Faculty of Aerospace Engineering University of Stuttgart, 2014

=



Gradient Systems

Consider a twice differentiable function F : U — R”

such that
f=-VF =

Then

- OF
8%1

UcCcWCR"

2) z(t) = —=VF(x(t))

is called a gradient dynamical system

o A
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Gradient Systems

2) #(t) = —~VF(z(t))

Theorem Uc W CR®

F(z) <0 forall z € U and F(z) =0
if and only if x is an equilibrium of (2)

Proof
chain rule
d B T
—F(zx) = (VF(x)) x
dt
T
= —(VF(x))" VF(x)
< 0
e -
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Gradient Systems

2) #(t) = —~VF(z(t))

Corollary

Let @ be an isolated minimizer of F'.
Then T is an asymptotically stable
equilibrium of (2).

Proof

=

isolated minimizer means F(z) > F(Z), Vo # T

verify that F(z) is a strict Lyapunov function for (2)
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Gradient Systems

what do gradient flows look like?

- look at “level surfaces” of F(z)

ccR F'(c)={x eR"|F(x) =c}

example
F(x) = x] + 23
H(t) = ~VF(a (1))
F(x) # 0 aregular point

At regular points the vector field

is perpendicular to the level surfaces
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Gradient Systems

Theorem

L et
t(t) = —VF(z(t))

be a gradient system. At regular points the
trajectories cross level surfaces orthogonally.
Nonregular points are equilibria of the system.
Isolated minima are asymptotically stable.
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Gradient Systems

what if there are no isolated minimizers?

F(x) > F(x),Vx #7, T € )
F(fl) — F(Tg), VZ1, Ty € (2

does a gradient dynamical system still
converge to a minimizer? which one?

Definition
w-Limit Set
Q) ={a e W|3It, — oo with x(t,) — a}
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Gradient Systems

#(t) = —VF(x(t))

Theorem

Let z € () be an w-limit point of
a trajectory of a gradient flow.

Then z is an equilibrium.
(stable)

Proof
x(t,) — 2= F(z(t,)) > F(z)

show invariance of Q

F(2)=0,Vz€e0
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Consensus as a Gradient System

F(x)=2"L(G)x

1

* symmetric matrix
* positive semi-definite
» convex function

min F'(x)

st-Order

Optimality Condition

mini

function is

mized for any

X

VF(z)=0

rec A

=
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Consensus as a Gradient System

F(x)= %xTL(Q)x

define gradient system

i(t) = —VEF(z(t))
= —L(G)x(t)

Theorem
Let z € Q be an w-limit point of what is the
a trajectory of a gradient flow. ) -limit set?

Then z is an equilibrium.
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LInear Agreement
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LInear Agreement

what can
general, a

e said a

nd their a

oout trees, or graphs in

gebraic connectivity?

o

which graph has largest /

algebraic connectivity?

o A

why do we care?
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| Inear Agreement

Definition
A wvertex cut-set for G = (V, &) is a subset of V
whose removal results in a disconnected graph.
The vertex connectivity of G, denoted k,(G), is
the cardinality of the smallest vertex cut-set of G.

Definition
A edge cut-set for G = (V, ) is a subset of £ whose
deletion increases the number of connected components

of G. The edge connectivity of G, denoted k.(G), is the
cardinality of the smallest edge cut-set of G.
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LInear Agreement

some connectivity bounds...

A2(G) < ky(G) < ke(G) < mind;

Ke(G) = 2

Ko(G) =1

[/
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