

Analysis and Control of Multi-Agent Systems

Daniel Zelazo Faculty of Aerospace Engineering Technion-Israel Institute of Technology

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Linear Consensus

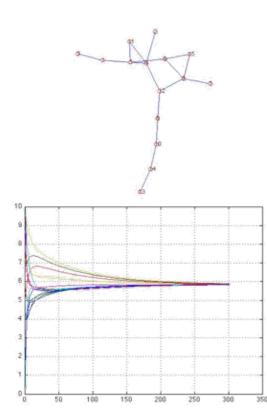
Weighted and Directed Graphs

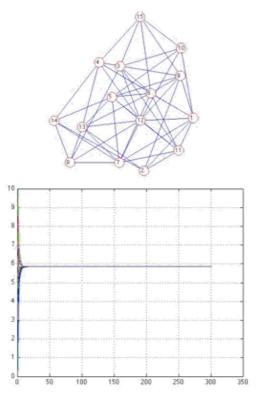
הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

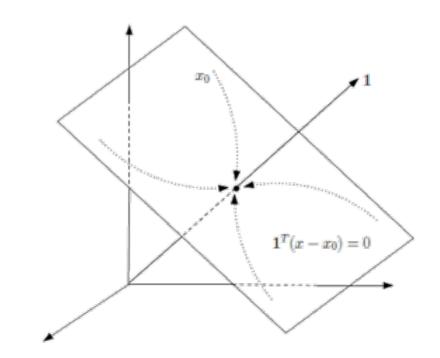
last time...

Linear Consensus

- undirected graphs
- continuous time
- gradient dynamics interpretation







 $\lim_{t \to \infty} x(t) = \frac{1}{n} \mathbf{1} \mathbf{1}^T x(0) \in \mathcal{A}$

 $\lambda_2(\mathcal{G})$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Linear Consensus over weighted and directed graphs

$$\dot{x}_i(t) = \sum_{(i,j)\in\mathcal{E}} w_{ij}(x_j(t) - x_i(t))$$

- communication and sensing is uni-directional
- relative measurements are weighted

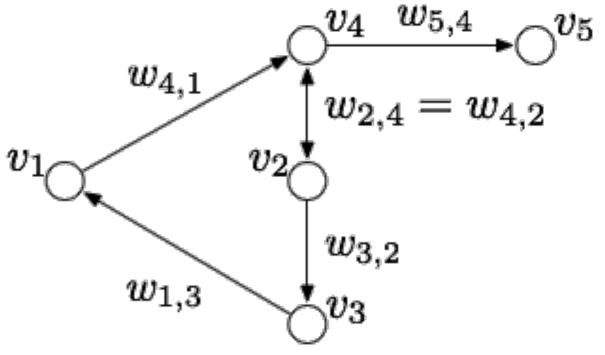
הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\dot{x}_i(t) = \sum_{(i,j)\in\mathcal{E}} w_{ij}(x_j(t) - x_i(t))$$

weighted and directed graph

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$$

$$\mathcal{W} : \mathcal{E} \to \mathbb{R}_{\geq 0}$$



$$w_{ij} = \mathcal{W}(e), \ e = (i, j) \in \mathcal{E}$$

 $W = \operatorname{diag}[\mathcal{W}(e_1), \, \mathcal{W}(e_2), \, \cdots, \, \mathcal{W}(e_{|\mathcal{E}|})]$ weight matrix

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\begin{split} \dot{x}_{i}(t) &= \sum_{(i,j)\in\mathcal{E}} w_{ij}(x_{j}(t) - x_{i}(t)) \\ \text{for example...} \\ \dot{x}_{4}(t) &= w_{4,1}(x_{1}(t) - x_{4}(t)) \\ &+ w_{4,2}(x_{2}(t) - x_{4}(t)) \\ \text{a directed and weighted Laplacian dynamics} \\ \dot{x}(t) &= - \begin{bmatrix} w_{1,3} & 0 & -w_{1,3} & 0 & 0 \\ 0 & w_{2,4} & 0 & -w_{2,4} & 0 \\ 0 & -w_{3,2} & w_{3,2} & 0 & 0 \\ -w_{4,1} & -w_{4,2} & 0 & w_{4,1} + w_{4,2} & 0 \\ 0 & 0 & 0 & -w_{5,4} & w_{5,4} \end{bmatrix} x(t) \end{split}$$

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The "in"-degree graph Laplacian Matrix

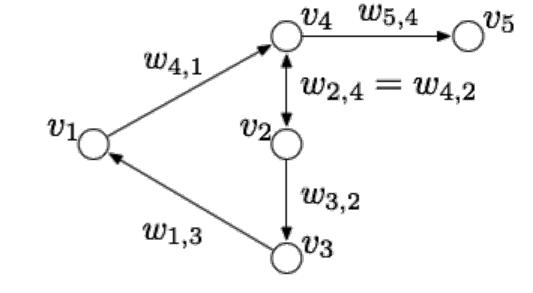
 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$

weighted adjacency matrix

$$[A(\mathcal{G})]_{ij} = \begin{cases} w_{i,j}, & \text{if } (v_j, v_i) \in \mathcal{E} \\ 0, & \text{otherwise.} \end{cases}$$

in-degree matrix

$$[\Delta_{in}(\mathcal{G})]_{ii} = \sum_{\{j \mid (v_j, v_i) \in \mathcal{E}\}} w_{ij}$$



$$L_{in}(\mathcal{G}) = \Delta_{in}(\mathcal{G}) - A(\mathcal{G})$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

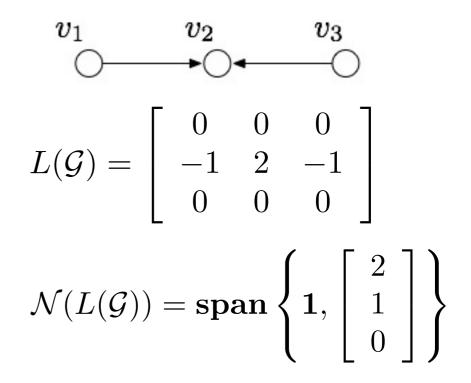
The "in"-degree graph Laplacian Matrix

$$L_{in}(\mathcal{G}) = \Delta_{in}(\mathcal{G}) - A(\mathcal{G})$$

some properties...

 $\mathbf{1} \in \mathcal{N}(L(\mathcal{G}))$

we need to refine our notions of trees, cycles, and connectedness to better understand the directed Laplacian



הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The "in"-degree graph Laplacian Matrix

$$L_{in}(\mathcal{G}) = \Delta_{in}(\mathcal{G}) - A(\mathcal{G})$$

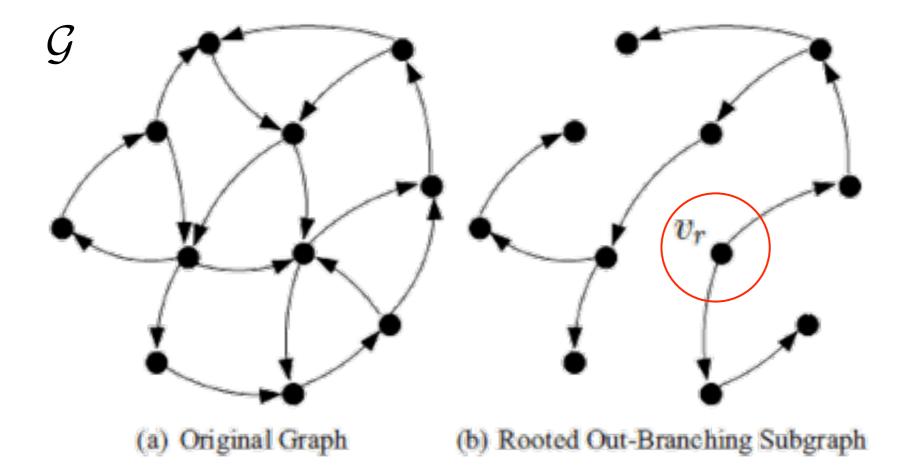
Definition

A rooted out-tree (arborescence) is an acyclic (no directed cycle) with a node $r \in \mathcal{V}$ (the root) such that

1. there is a directed path from r to every other node in \mathcal{V} ,

- 2. the in-degree of r is zero, and
- 3. the in-degree of every other vertex is one.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering



 ${\cal G}$ contains a rooted out-branching

Theorem

A digraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ contains a rooted out-branching if and only if $\operatorname{rank} L(\mathcal{G}) = n - 1$.

proof

by construction $L(\mathcal{G})\mathbf{1} = 0$ **rank** $L(\mathcal{G}) = n - 1 \Leftrightarrow 0$ is a simple eigenvalue look at characteristic polynomial $p_{\mathcal{G}}(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_0^0$ $\alpha_1 = \sum \det L_v(\mathcal{G})$

Matrix-Tree Theorem for Weighted Graphs

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

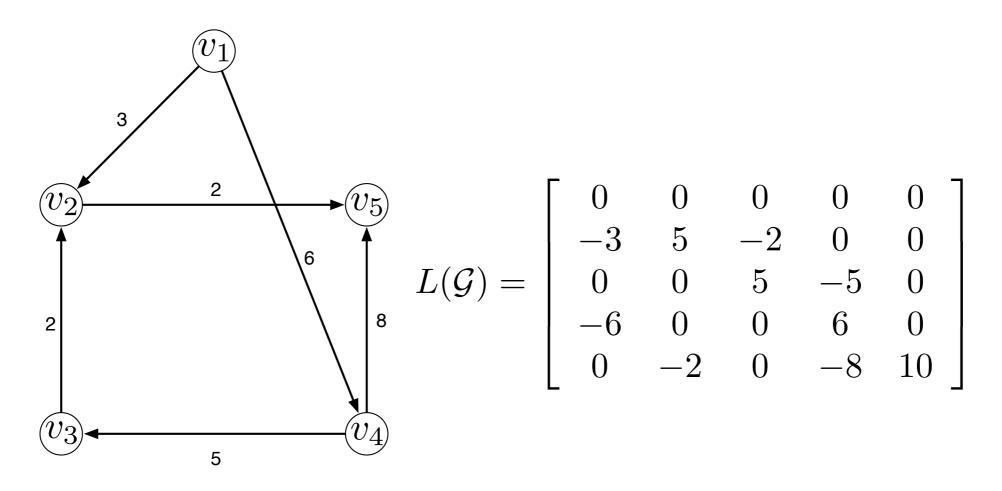
Theorem

Let $v \in \mathcal{V}$ be an arbitrary vertex of a weighted digraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$. Then $\det L_v(\mathcal{G}) = \sum_{T \in \mathcal{T}_v} \prod_{e \in T} \mathcal{W}(e),$

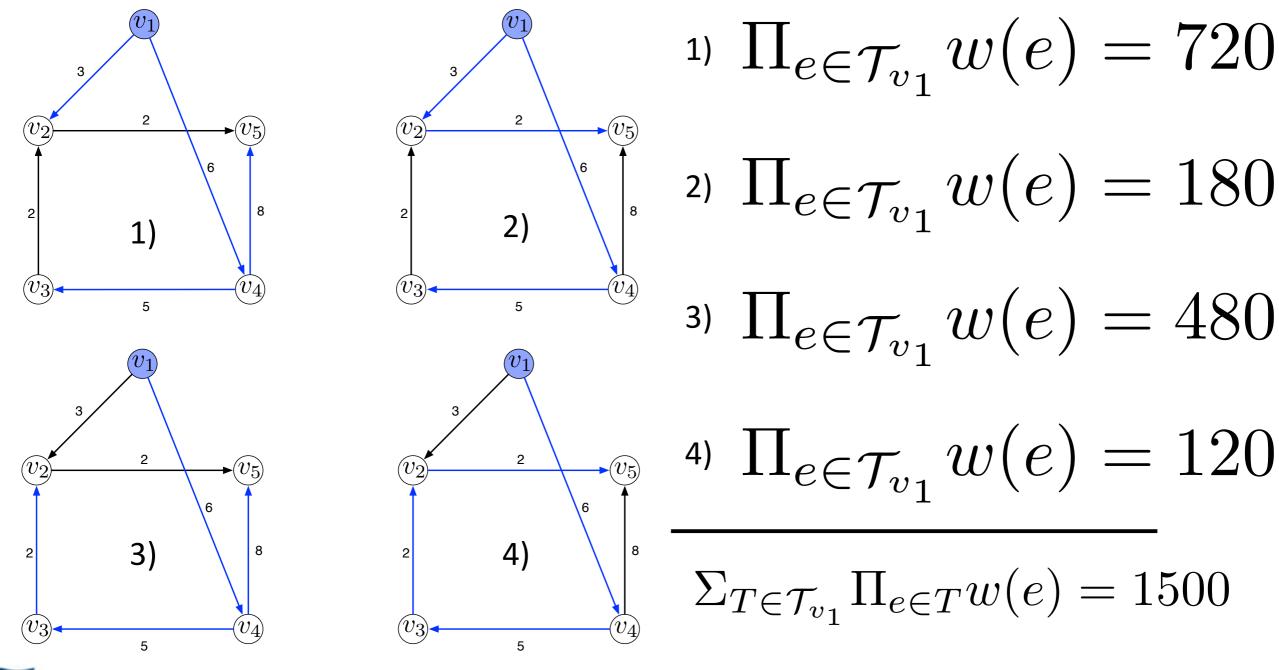
where \mathcal{T}_v is the set of rooted out-branchings with root v in \mathcal{G} , $\prod_{e \in T} \mathcal{W}(e)$ is the product of the weights on the edges of an out-branching T, and $L_v(\mathcal{G})$ is the v-th principal sub-matrix of $L(\mathcal{G})$.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Matrix-Tree Theorem for Weighted Graphs example...

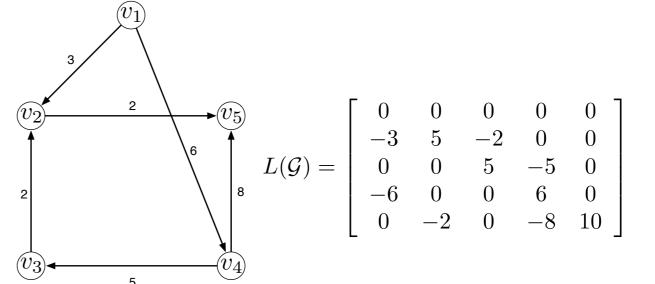


Matrix-Tree Theorem for Weighted Graphs example...



הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Matrix-Tree Theorem for Weighted Graphs example...



principal minor at node v_1

$$L_{v_1}(\mathcal{G}) = \begin{bmatrix} 5 & -2 & 0 & 0 \\ 0 & 5 & -5 & 0 \\ 0 & 0 & 6 & 0 \\ -2 & 0 & -8 & 10 \end{bmatrix} \quad \det(L_{v_1}(\mathcal{G})) = 1500$$

$$\det(\lambda I - L(\mathcal{G})) = \lambda^5 - 26\lambda^4 + 245\lambda^3 - 1000\lambda^2 + 1500\lambda$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The "in"-degree graph Laplacian Matrix

$$L_{in}(\mathcal{G}) = \Delta_{in}(\mathcal{G}) - A(\mathcal{G})$$

where are the eigenvalues?

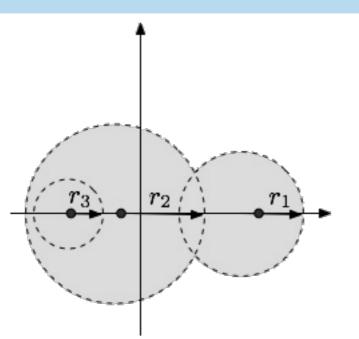
 $\dot{x}(t) = -L(\mathcal{G})x(t)$ $x(t) = e^{-L(\mathcal{G})t}x(t_0)$ $\lim_{t \to \infty} x(t) = ???$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Theorem [Geršgorin Circle Theorem]

Consider a square matrix $M \in \mathbb{R}^{n \times n}$. Let $D([M]_{ii}, r_i)$ be a closed disc on the complex plane, centered at $[M]_{ii}$ with radius $r_i = \sum_{i \neq j} |[M]_{ij}|$. Then the eigenvalues of M lie in the union of the discs,

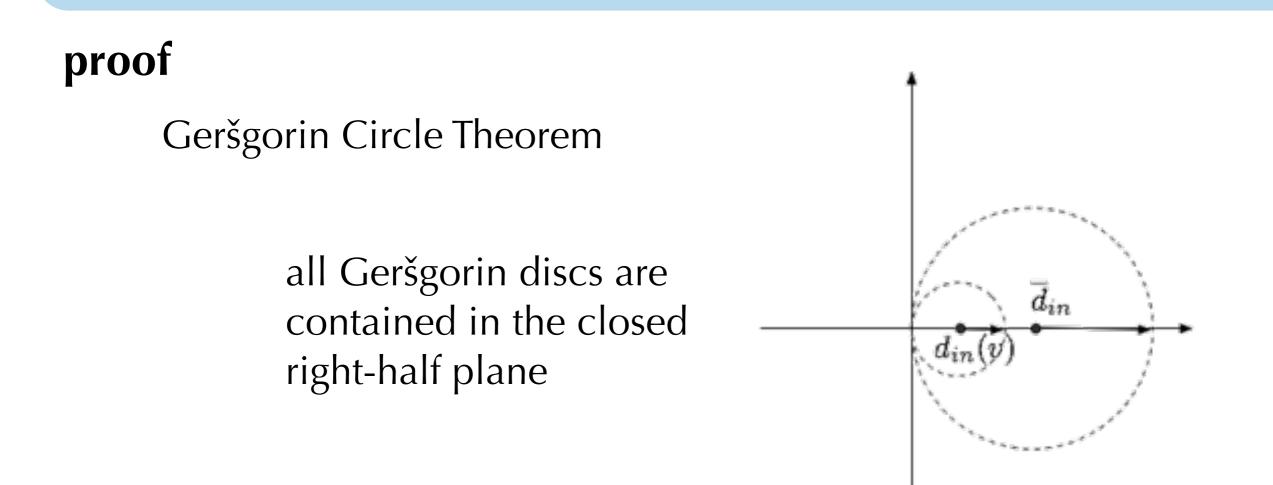
 $\lambda(M) \subseteq \cup_i D([M]_{ii}, r_i).$



הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Theorem

The eigenvalues of the graph Laplacian for a weighted and directed graph \mathcal{G} have non-negative real parts.



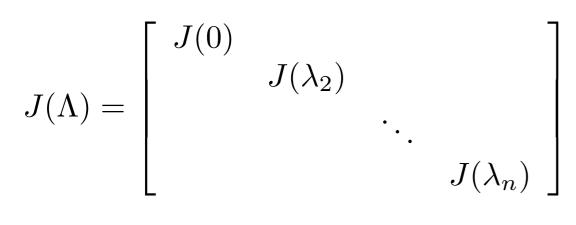
הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Consensus Dynamics

$$\dot{x}(t) = -L(\mathcal{G})x(t)$$

recall Jordan form:

$$L(\mathcal{G}) = PJ(\Lambda)P^{-1}$$



$$J(\lambda_i) = \lambda_i I + \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ 0 & \cdots & \cdots & 0 \end{bmatrix}$$

each block is the size of the algebraic multiplicity of corresponding eigenvalue

note: there may not be n Jordan blocks

nilpotent matrix

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

Theorem

For a weighted digraph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ containing a rooted out-branching, the state trajectory generated by $\dot{x}(t) = -L(\mathcal{G})x(t)$ with initial condition x(0) satisfies

$$\lim_{t \to \infty} x(t) = (p_1 q_1^T) x(0),$$

where p_1 and q_1 are, respectively, the right- and lefteigenvectors associated with the zero eigenvalue of $L(\mathcal{G})$, normalized such that $p_1^T q_1 = 1$.

in particular...
$$\lim_{t \to \infty} x(t) = (q_1^T x_0) \mathbf{1}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Corollary

The consensus protocol over a weighted and directed graph converges to the agreement set for all almost all initial conditions if and only if the digraph contains a rooted out-branching.

What about average agreement?

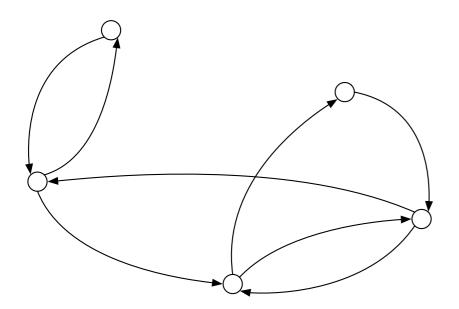
Can the consensus protocol over directed graphs reach average agreement?

If yes, what are the right conditions?

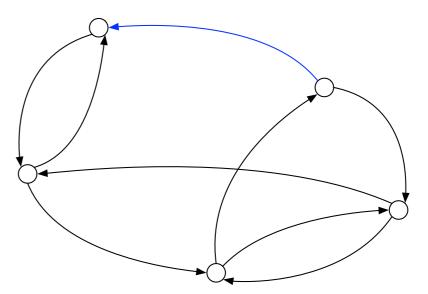
הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Definition

A digraph is *balanced* if for every vertex, the in-degree and the out-degree are equal.



balanced



unbalanced

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

A balanced digraph is weakly connected if and only if it is strongly connected.

proof

balanced and strongly connected \Rightarrow weakly connected (trivial)

balanced and weakly connected \Rightarrow strongly connected

partition node set such that induced subgraph is strongly connected

 $\mathcal{V} = S_1 \cup S_2 \cup \cdots \cup S_r \qquad \text{(single vertex ok)}$

 $\mathcal{G}_{S_i} \subset \mathcal{G}$ strongly connected

Proposition

A balanced digraph is weakly connected if and only if it is strongly connected.

proof

graph is balanced $\sum_{v \in S_k} d_{in}(v) = \sum_{v \in S_k} d_{out}(v) \Rightarrow \sum_{v \in S_k} d_{in}(v) - \sum_{v \in S_k} d_{out}(v) = 0$ # edges entering - # edges leaving $S_k \qquad S_k$

number of edges entering each component equals number of edges leaving

Proposition

A balanced digraph is weakly connected if and only if it is strongly connected.

proof

define a new graph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$

 $\mathcal{V}' = \{\hat{S}_1, \hat{S}_2, \dots, \hat{S}_r\} \quad \text{each vertex corresponds to connected} \\ component defined in original graph \\ e' = (\hat{S}_i, \hat{S}_j) \in \mathcal{E}' \Leftrightarrow \exists e = (v_i, v_j) \in \mathcal{E} \ s.t. \ v_i \in S_i, \ v_j \in S_j \\ \underbrace{r > 1}_{\substack{S_1 \\ f_1 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_2 \\ f_1 \\ f_2 \\ f_2 \\ f_2 \\ f_3 \\ f_1 \\ f_1 \\ f_2 \\ f_1 \\ f_2 \\ f_3 \\ f_1 \\ f_2 \\ f_3 \\ f_1 \\ f_2 \\ f_3 \\ f_3 \\ f_1 \\ f_1 \\ f_2 \\ f_3 \\ f_1 \\ f_2 \\ f_3 \\ f_3 \\ f_3 \\ f_3 \\ f_3 \\ f_1 \\ f_1 \\ f_2 \\ f_3 \\ f_1 \\ f_3 \\ f_1 \\ f_1 \\ f_2 \\ f_3 \\ f_3 \\ f_1 \\ f_3 \\ f_3 \\ f_1 \\ f_3 \\ f_1 \\ f_3 \\ f_1 \\ f_3 \\$

 \Rightarrow graph is not weakly connected! (contradiction)

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

A balanced digraph is weakly connected if and only if it is strongly connected.

proof

$$d_{in}(\hat{S}_i) > 0 \Rightarrow d_{out}(\hat{S}_i) > 0, \ k = 1, \dots, r$$

 \Rightarrow graph must contain a cycle (why?)! we can partition into smaller number of connected components

 $\Rightarrow r = 1 \quad \mbox{there can only be one component, i.e., the graph is} \\ \mbox{strongly connected}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Proposition

A graph Laplacian of balanced digraph containing a rooted out-branching satisfies

$$L_{in}(\mathcal{G})\mathbf{1} = 0 \text{ and } \mathbf{1}^T L_{in}(\mathcal{G}) = 0^T$$

$$L_{in}(\mathcal{G}) = \Delta_{in}(\mathcal{G}) - A(\mathcal{G})$$

proof

$$L_{in}(\mathcal{G}) + L_{in}(\mathcal{G})^T = L(\hat{\mathcal{G}})$$

$$\hat{\mathcal{G}}$$
 is an *undirected* graph

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Theorem

The consensus protocol over a weighted digraph converges to the average of the initial conditions for almost all initial conditions if and only if the digraph is balanced and weakly connected.

proof

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering