

Analysis and Control of Multi-Agent Systems

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

Control of Networks

Controlled Agreement

last time...

Formation Stabilization

- more general linear dynamics
- "consensus" feedback
- graph induced robustness margins
- normalized graph Laplacian

Controlled Agreement

- consensus protocol with a "rebel"
- input-output setup
- controllability

Networks as Systems

Can we relate system-theoretic properties to graph-theoretic concepts?

Networks as Systems

an 'input-output' modification of consensus networks

- attach to the network a
 - a control node
 - an observation node
- all other agents run consensus

הפקולטה להנדסת אוירונוטיקה וחלל

Networks as Systems

an 'input-output' modification of consensus networks

 can we infiltrate or manipulate the network behavior using these control nodes?

 can we *identify* properties of the network from the observation nodes?

Is this system "controllable"?

$$x(t) = -L(\mathcal{G})x(t)$$

assume one agent "ignores" the protocol and injects a different signal

$$x(t) = -L(\mathcal{G})x(t)$$

assume one agent "ignores" the protocol and injects a different signal

an input-output representation

$$\dot{x}_f(t) = A_f(\mathcal{G})x_f(t) + B_f(\mathcal{G})u(t)$$
$$y(t) = C_f(\mathcal{G})x_f(t)$$

assume nodes are labeled so control node is node #1

$$E(\mathcal{G}) = \begin{bmatrix} e_1(\mathcal{G}) \\ E_f(\mathcal{G}) \end{bmatrix} \underbrace{\mathcal{G}_{f,e_3}}^{e_1/e_3}$$

$$e_1(\mathcal{G}) = [1 \quad -1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0]$$

$$E_f(\mathcal{G}) = \begin{bmatrix} -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

rewrite the Laplacian...

$$L(\mathcal{G}) = \begin{bmatrix} e_1 e_1^T & e_1 E_f^T \\ E_f e_1^T & E_f E_f^T \end{bmatrix}$$

$$\Delta_f$$
 input-to-state degree matrix

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 4 & -1 & -1 \\ 0 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

rewrite the Laplacian...

$$L(\mathcal{G}) = \begin{bmatrix} e_1 e_1^T & e_1 E_f^T \\ \hline E_f e_1^T & E_f E_f^T \end{bmatrix}$$

Input Indicator function for follower graph
$$\delta_1 = \left\{ \begin{array}{ll} 1, & v_i \sim v_1, \ v_i \in \mathcal{G}_f \\ 0, & o.w. \end{array} \right. \quad \text{ex.} \quad \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$
 observe...

observe...

$$\delta_1 := -E_f e_1^T$$

"indicator" showing nodes in follower graph that are connected to anchor

"Controlled Consensus"

$$\dot{x}_f(t) = -(L(\mathcal{G}_f) + \Delta_f)x_f(t) - \delta_1 x_1(t)$$

node 1 ignores everyone follower nodes are "driven" by node 1 our control

Under what graph-theoretic conditions is this system uncontrollable?

Controllability

Consider a linear and time-invariant system

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad \qquad x(t) \in \mathbb{R}^n$$
$$u(t) \in \mathbb{R}^m$$

Does there exist a control u(t) that can steer the system state from an arbitrary initial condition to an arbitrary point in finite time?

Formation Stabilization

Theorem

The pair (A, B) is controllable if and only if

$$\mathbf{rk}\mathcal{C} = \mathbf{rk} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = n.$$

Theorem

הפקולטה להנדסת אוירונוטיקה וחלל

Faculty of Aerospace Engineering

The pair (A, B) is *controllable* if and only if there is no left-eigenvector of A that is orthogonal to B, i.e.,

$$v^T B \neq 0, \forall v \neq 0, s.t. v^T A = \lambda v^T.$$

Proposition

Given a single input linear system with symmetric state matrix A, if there exists an eigenvalue with geometric multiplicity greater than 1, then the system is uncontrollable.

Lemma

The controlled consensus system is controllable if and only if $L(\mathcal{G})$ and $L(\mathcal{G}_f) + \Delta_f$ do not share an eigenvalue.

proof

assume uncontrollable: $\exists\,v\ s.t.\ (L(\mathcal{G}_f)+\Delta_f)v=\lambda v$ $B_f^Tv=0$

$$\begin{bmatrix} d_1 & B_f^T \\ B_f & L(\mathcal{G}_f) + \Delta_f \end{bmatrix} \begin{bmatrix} 0 \\ v \end{bmatrix} = \lambda \begin{bmatrix} 0 \\ v \end{bmatrix}$$

 $\Rightarrow \lambda$ is an eigenvalue of $L(\mathcal{G})$

Lemma

The controlled consensus system is controllable if and only if $L(\mathcal{G})$ and $L(\mathcal{G}_f) + \Delta_f$ do not share an eigenvalue.

proof

assume common eigenvalue $L(\mathcal{G})v = \lambda v, \ (L(\mathcal{G}_f) + \Delta_f)u = \lambda u$

$$\begin{bmatrix} d_1 & B_f^T \\ B_f & L(\mathcal{G}_f) + \Delta_f \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} d_1v_1 + B_f^Tv_2 \\ B_fv_1 + (L(\mathcal{G}_f) + \Delta_f)v_2 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \end{bmatrix} \Rightarrow v_1 = 0, B_f^Tv_2 = 0, v_2 = u$$

observe...

$$(L(\mathcal{G}_f) + \Delta_f)\mathbf{1} = \delta_1$$

Corollary

The controlled consensus system is controllable if and only if none of the eigenvectors of $L(\mathcal{G}_f) + \Delta_f$ are orthogonal to 1.

Corollary

If the single-input controlled agreement protocol is uncontrollable, then there exists an eigenvector v of A_f such that

$$\sum_{i \sim 1} v_i = 0.$$

proof

uncontrollable $\Leftrightarrow \exists v \ s.t. \ A_f v = \lambda v, \ v^T \mathbf{1} = 0$

$$\mathbf{1}^T (L(\mathcal{G}_f) + \Delta_f) v = \mathbf{1}^T \Delta_f v = 0 \implies \sum_{i \sim 1} v_i = 0$$

Corollary

If the single-input controlled agreement protocol is uncontrollable, then there exists an eigenvector v of $L(\mathcal{G})$ that has a zero component at the index corresponding to the leader node (i.e., $v_1 = 0$).

proof

assume
$$A_f v = \lambda v$$
, $\mathbf{1}^T v = 0$

$$\begin{bmatrix} d_1 & B_f^T \\ B_f & A_f \end{bmatrix} \begin{bmatrix} 0 \\ v \end{bmatrix} = \begin{bmatrix} B_f^T v \\ \lambda v \end{bmatrix}$$

uncontrollable means
$$B_f^T v = 0 \Rightarrow \left[\begin{array}{c} 0 \\ v \end{array} \right]$$
 is an eigenvector with zero in component at index corresponding to anchor node!

From Algebraic to Graph Theoretic Conditions

"Controlled Consensus"

$$\dot{x}_f(t) = -(L(\mathcal{G}_f) + \Delta_f)x_f(t) - \delta_1 x_1(t)$$

all controllability results have been based on *algebraic tests*

is there a graph theoretic interpretation?

Graph Symmetry and Graph Automorphisms

Definition

Two graphs $\mathcal{G}_1 = (\mathcal{V}_1, \mathcal{E}_1)$ and $\mathcal{G}_2 = (\mathcal{V}_2, \mathcal{E}_2)$ are said to be isomorphic if there exists a bijection $\beta : \mathcal{V}_1 \to \mathcal{V}_2$ such that $(v_1, v_2) \in \mathcal{E}_1$ if and only if $(\beta(v_1), \beta(v_2)) \in \mathcal{E}_2$.

$$\beta(v_1) = u_1$$
 $\beta(v_2) = u_6$
 $\beta(v_3) = u_7$ $\beta(v_4) = u_3$
 $\beta(v_5) = u_5$ $\beta(v_6) = u_4$
 $\beta(v_7) = u_2$ $\beta(v_8) = u_8$

Definition

An automorphism of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a permutation ψ of its vertex set such that

$$\{\psi(v_i), \psi(v_j)\} \in \mathcal{E} \Leftrightarrow \{v_i, v_j\} \in \mathcal{E}.$$

an automorphism is an isomorphism of a graph "onto itself"

Proposition

Let $A(\mathcal{G})$ be the adjacency matrix of the graph \mathcal{G} and ψ a permutation on its vertex set \mathcal{V} . Associate with this permutation the permutation matrix Ψ such that

$$[\Psi]_{ij} = \begin{cases} 1, & if \ \psi(i) = j, \\ 0, & o.w. \end{cases}$$
.

Then ψ is an automorphism of \mathcal{G} if and only if

$$\Psi A(\mathcal{G}) = A(\mathcal{G})\Psi$$

Definition

The controlled agreement system is $input \ symmetric$ with respect to the anchor node if there exists a nonidentity permutation matrix J such that

$$JA_f = A_f J$$
.

$$JA_{f} = A_{f}J$$

$$J(L(\mathcal{G}_{f}) + \Delta_{f}) = (L(\mathcal{G}_{f}) + \Delta_{f})J$$

$$J(\Delta(\mathcal{G}_{f}) - A(\mathcal{G}_{f}) + \Delta_{f}) = (\Delta(\mathcal{G}_{f}) - A(\mathcal{G}_{f}) + \Delta_{f})J$$

$$J(\Delta(\mathcal{G}_{f}) + \Delta_{f}) - JA(\mathcal{G}_{f}) = \tilde{\Delta}J - A(\mathcal{G}_{f})J$$

Proposition

Let Ψ be the matrix associated with a permutation ψ . Then

$$\Psi(\Delta(\mathcal{G}_f) + \Delta_f) = (\Delta(\mathcal{G}_f) + \Delta_f)\Psi$$

if and only if, for all i

$$d_i(\mathcal{G}_f) + \delta_1(i) = d_{\psi(i)}(\mathcal{G}_f) + \delta_1(\psi(i)).$$

In the case where ψ is an automorphism of \mathcal{G}_f , the condition becomes

Analysis and Control of Multi-Agent Systems

University of Stuttgart, 2014

$$\delta_1(i) = \delta_1(\psi(i)), \forall i.$$

recall:
$$\delta_1 = B_f = -E_f e_1^T$$

Controlled Agreement and Symmetry

Proposition

The controlled agreement protocol is input symmetric if and only if there is a nonidentity automorphism for \mathcal{G}_f such that the input indicator vector remains invariant under its action.

Corollary

The controlled agreement protocol is input asymmetric if the automorphism graph of \mathcal{G}_f only contains the trivial (identity) permutation.

Controlled Agreement and Symmetry

Theorem

The controlled agreement protocol is uncontrollable if it is input symmetric. Equivalently, it is uncontrollable if \mathcal{G}_f admits a nonidentity automorphism for which the input indicator vector remains invariant under its action.

Input symmetry is *not* a necessary condition for controllability of the controlled agreement protocol!

A Counter Example

follower graph is the *smallest asymmetric graph*; it does not admit any nonidentity automorphism

corresponding system is *not* input symmetric with respect to node *a*, but controlled agreement is not controllable.

Cycle Graphs

the cycle graph is uncontrollable from any single anchor node!

the path graph with odd number of vertices is always uncontrollable from the center node