

Analysis and Control of Multi-Agent Systems

Daniel Zelazo Faculty of Aerospace Engineering Technion-Israel Institute of Technology

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Control of Networks

Edge Agreement and Consensus Performance

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

last time...

Controlled Agreement

- consensus protocol with a "rebel"
- input-output setup
- controllability

Performance of Consensus

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

An 'input-output' consensus model

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

what happens when consensus is driven by Gaussian white noise?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

what happens when consensus is driven by Gaussian white noise?

$$\frac{\mathbf{\dot{x}}}{\mathbf{x}}(t) = \frac{1}{n} \mathbf{1}^T w(t)$$

average is "driven" by noises...

$$\mathcal{E}(\overline{x}(t)^2) = \frac{\sigma_w^2}{n}t$$

a random walk

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 $\mathcal{E}(y(t)^T y(t))$

what happens when consensus is driven by Gaussian white noise? $\mathcal{N}(E(\mathcal{G})^T) = \operatorname{span}\{\mathbf{1}\}$

When driven by noise, it is meaningful to examine how noises effect the stead-state covariance of the *relative states*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

H₂ Performance of Linear Systems

A stable linear system

$$\Sigma \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

 \mathcal{H}_2 System Norm

$$\|\Sigma\|_2 = \sqrt{\operatorname{trace} CPC^T}$$

Controllability Gramian

$$P = \int_0^\infty e^{At} B B^T e^{A^T t} dt \qquad AP + PA^T + BB^T = 0$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

H₂ Performance of Linear Systems

A stable linear system

$$\Sigma \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

for linear systems driven by white Gaussian noise, the \mathcal{H}_2 system norm can be interpreted as a *bound* on the *steady-state covariance* of the output

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A Minimal Realization

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A Minimal Realization

$$\begin{cases} \dot{\tilde{x}}(t) &= -S^{-1}L(\mathcal{G})S\tilde{x}(t) + S^{-1}w(t) \\ z(t) &= E(\mathcal{G})^TS\tilde{x}(t) \end{cases}$$

$$S = \begin{bmatrix} -0.45 & -0.45 & -0.45 & -0.45 & 0.45 \\ 0.86 & -0.14 & -0.14 & -0.14 & 0.45 \\ -0.14 & 0.86 & -0.14 & -0.14 & 0.45 \\ -0.14 & -0.14 & 0.86 & -0.14 & 0.45 \\ -0.14 & -0.14 & -0.14 & 0.86 & 0.45 \end{bmatrix}$$

$$S^{-1}L(\mathcal{G})S = \begin{bmatrix} 2.90 & 0.90 & 0.90 & -0.40 & 0.00 \\ 0.90 & 1.90 & 0.90 & 0.60 & 0.00 \\ 0.90 & 0.90 & 1.90 & 0.60 & -0.00 \\ -0.40 & 0.60 & 0.60 & 1.29 & -0.00 \\ \hline 0.00 & 0.00 & 0.00 & 0.00 & -0.00 \end{bmatrix}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Analysis and Control of Multi-Agent Systems University of Stuttgart, 2014

 ${\cal G}$

Spanning Trees and Cycles

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

Analysis and Control of Multi-Agent Systems University of Stuttgart, 2014

remaining edges

Edge Laplacian

$$\begin{cases} \dot{\tilde{x}}(t) &= -S^{-1}L(\mathcal{G})S\tilde{x}(t) + S^{-1}w(t) \\ z(t) &= E(\mathcal{G})^TS\tilde{x}(t) \end{cases}$$

$$\begin{bmatrix} x_{\tau}(t) \\ \overline{x}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} E(\mathcal{T})^T \\ \frac{1}{n}\mathbb{1}^T \end{bmatrix}}_{S^{-1}} x(t)$$

$$\begin{bmatrix} \dot{x}_{\tau}(t) \\ \dot{\overline{x}}(t) \end{bmatrix} = \begin{bmatrix} (E(\mathcal{T})^T E(\mathcal{T})) \mathcal{R}_{(\tau,c)} \mathcal{R}_{(\tau,c)}^T & \mathbf{0} \\ \mathbf{0} \end{bmatrix} x(t) \begin{bmatrix} x_{\tau}(t) \\ \overline{x}(t) \end{bmatrix} + \begin{bmatrix} E(\mathcal{T})^T \\ \frac{1}{n} \mathbb{1}^T \end{bmatrix} w(t)$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Edge Laplacian

Edge Laplacian $L_e(\mathcal{G}) = E(\mathcal{G})^T E(\mathcal{G})$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Edge Agreement Problem

$$\Sigma_{e}(\mathcal{G}): \begin{cases} \dot{x}_{\tau}(t) = -L_{e}(\mathcal{T})R_{(\tau,c)}R_{(\tau,c)}^{T}x_{\tau}(t) + \\ & \left[E(\mathcal{T})^{T} - L_{e}(\mathcal{T})R_{(\tau,c)} \right] \begin{bmatrix} w(t) \\ v(t) \end{bmatrix} \\ z(t) = x_{\tau}(t). \end{cases}$$

stable and minimal realization of consensus protocol

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Performance of edge agreement problem can be used to study how noises affect the relative-state output

\mathcal{H}_2 Performance of Edge Agreement

Theorem

$$\|\Sigma_{e}(\mathcal{G})\|_{2}^{2} = \frac{1}{2} \mathbf{tr} \left[(R_{(\mathcal{T},\mathcal{C})} R_{(\mathcal{T},\mathcal{C})}^{T})^{-1} \right] + (n-1)$$

some immediate bounds...

$$\|\Sigma_e(\mathcal{G})\|_2^2 \le \|\Sigma_e(\mathcal{T})\|_2^2 = \frac{3}{2}(n-1)$$

all trees are the same

$$\|\Sigma_e(\mathcal{G})\|_2^2 \ge \|\Sigma_e(K_n)\|_2^2 = \frac{n^2 - 1}{n}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

500 random 5-regular graphs

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

\mathcal{H}_2 Performance of Edge Agreement

Theorem: Adding cycles always improves the performance.

$$\begin{split} \|\Sigma_{e}(\mathcal{G} \cup e)\|_{2}^{2} &= \|\Sigma_{e}(\mathcal{G})\|_{2}^{2} - \\ \frac{\left(R_{(\tau,c)}R_{(\tau,c)}^{T}\right)^{-1}cc^{T}\left(R_{(\tau,c)}R_{(\tau,c)}^{T}\right)^{-1}}{2\left(1 + c^{T}\left(R_{(\tau,c)}R_{(\tau,c)}^{T}\right)^{-1}c\right)} \end{split}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Performance and Cycles

Is there a *combinatorial* feature that affects the performance?

Corollary

$$\|\Sigma_e(\mathcal{T} \cup e)\|_2^2 = \|\Sigma_e(\mathcal{T})\|_2^2 - \frac{1}{2}(1 - l(c)^{-1})\|_2^2$$

long cycles are "better"

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Cycles as Feedback

 $L_e(\mathcal{T})R_{(\mathcal{T},\mathcal{C})}R_{(\mathcal{T},\mathcal{C})}^T = L_e(\mathcal{T}) + L_e(\mathcal{T})T_{(\mathcal{T},\mathcal{C})}T_{(\mathcal{T},\mathcal{C})}^T$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Cycles as Feedback

$$L_e(\mathcal{T})R_{(\mathcal{T},\mathcal{C})}R_{(\mathcal{T},\mathcal{C})}^T = L_e(\mathcal{T}) + L_e(\mathcal{T})T_{(\mathcal{T},\mathcal{C})}T_{(\mathcal{T},\mathcal{C})}^T$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Effective Resistance of a Graph

The **effective resistance** between two nodes *u* and *v* is the electrical resistance measured across the nodes when the graph represents an electrical circuit with each edge a resistor

Faculty of Aerospace Engineering

Effective Resistance of a Graph

Proposition 1 $L^{\dagger}(\mathcal{G}) = (E_{\tau}^{L})^{T} \left(R_{(\tau,c)} W R_{(\tau,c)}^{T} \right)^{-1} E_{\tau}^{L}$

$$r_{uv} = (\mathbf{e}_u - \mathbf{e}_v)^T L^{\dagger}(\mathcal{G})(\mathbf{e}_u - \mathbf{e}_v)$$

$$E_{\mathcal{T}}^L(\mathbf{e}_u - \mathbf{e}_v) = \begin{bmatrix} \pm 1 \\ 0 \\ \pm 1 \\ 0 \end{bmatrix} \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \\ \tau_4 \end{bmatrix} u \quad \tau_1$$
indicates a path from node u to v using only edges in the spanning tree
$$T_{(\mathcal{T},c)} = \underbrace{(E_{\mathcal{T}}^T E_{\mathcal{T}})^{-1} E_{\mathcal{T}}^T}_{F^L} E(\mathcal{C})$$

$$\mathcal{G} = \mathcal{T} \cup \mathcal{C}$$

 $E_{\mathcal{T}}^L$

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

\mathcal{H}_2 Performance and Effective Resistance

Consensus driven by WGN

$$\begin{cases} \dot{x}(t) = -L(\mathcal{G})x(t) + w(t) \\ z(t) = E(K_n)^T x(t) & \text{monitor } all \text{ possible} \\ \text{relative states} \end{cases}$$

$$\begin{bmatrix} x_{\tau}(t) \\ \overline{x}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} E(\mathcal{T})^T \\ \frac{1}{n}\mathbb{1}^T \end{bmatrix}}_{S^{-1}} x(t)$$

Edge Agreement....

$$\begin{cases} \dot{x}_{\tau}(t) = -L_{ess}(\mathcal{G})x_{\tau}(t) + E(\mathcal{T})^{T}w(t) \\ z(t) = E(K_{n})^{T}E(\mathcal{T})L_{e}(\mathcal{T})^{-1}x_{\tau}(t) \end{cases}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

\mathcal{H}_2 Performance and Effective Resistance

Edge Agreement...

$$\Sigma_{e}(\mathcal{G}) \begin{cases} \dot{x}_{\tau}(t) = -L_{ess}(\mathcal{G})x_{\tau}(t) + E(\mathcal{T})^{T}w(t) \\ z(t) = E(K_{n})^{T}E(\mathcal{T})L_{e}(\mathcal{T})^{-1}x_{\tau}(t) \end{cases}$$

$$T_{(\mathcal{T},K_n)} = E(K_n)^T E(\mathcal{T}) L_e(\mathcal{T})^{-1}$$

$$\begin{split} \|\Sigma_e(\mathcal{G})\|_2^2 &= \frac{1}{2} \operatorname{tr} \left[T_{(\mathcal{T},K_n)}^T (\mathcal{R}_{(\mathcal{T},\mathcal{C})} \mathcal{R}_{(\mathcal{T},\mathcal{C})}^T)^{-1} T_{(\mathcal{T},K_n)} \right] \\ &= \frac{1}{2} R_{tot}(\mathcal{G}) \end{split}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering