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Control of Networks

Edge Agreement and Consensus Performance
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Consensus with Exogenous Inputs

An ‘input-output’ consensus model
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Consensus with Exogenous Inputs

what happens when consensus is driven
by Gaussian white noise?
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Consensus with Exogenous Inputs

what happens when consensus is driven

by Gaussian white noise?

S = 1T w(t)

T
average is “driven” by noises...
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Consensus with Exogenous Inputs

what happens when consensus is driven
by Gaussian white noise? N(E(G)T) = span{1}

E(y(t) y(t))

When driven by noise, it is meaningful to examine
how noises effect the stead-state covariance of the
relative states
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Ho Performance of Linear Systems

w(t) : > ) >z(t)
A stable linear system ) ”
S { t(t) = Ax(t) + Bu(t)
y(t) = Cu(t)

Ho System Norm

|2l = Vtrace CPCT

Controllability Gramian
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Ho Performance of Linear Systems
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for linear systems driven by white Gaussian noise, the
Ho system norm can be interpreted as a bound on the
steady-state covariance of the output
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A Minimal Realization

controlled
z(t) variable
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A Minimal Realization
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Spanning Trees and Cycles

A graph as the union of a spanning
tree and edges that complete cycles

JC

remaining edges

a spanning tree
b 5 “complete cycles”

E(G)=E(T) [ I Tiroe } Cycles are a “linear combination”
e ' '
of edges in a spanning tree
R(T.0)
T 1 T ,
Lire) = SET Er) ETJE(C) R rows form a basis for the
~ (T°5C)  cut space of the graph
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Edge Laplacian
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Edge Laplacian

Edge Laplacian

Le(9)

— E(6)"E(G)

Essential Edge Laplacian

T)Rr.0)Rir.c)

similarity between edge
and graph Laplacians
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The Edge Agreement Problem
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stable and minimal
realization of
consensus protocol
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Consensus with Exogenous Inputs

N(E(G)") = span{1}

— —Le(T)R(T.C)R?;',C)IT(t_) T -
w(t)

| E(TYT —Ld(T)Rere) | o |

= x(t).

Performance of edge agreement problem can be used
to study how noises affect the relative-state output
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Ho Performance of Edge Agreement

Theorem

Q)13 = str [(RereRY ) '] + (0 — 1

T,C)

some immediate bounds...
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for general k-regular graphs...
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dependant on structure
and cycles
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Ho Performance of Edge Agreement

Theorem: Adding cycles always improves
the performance.
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Performance and Cycles

Is there a combinatorial feature
that affects the performance?

/ Corollary

q (T U = [8(TI3 — 51— 1))
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Cycles as Feedback

w(t)
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Cycles as Feedback

w(t) - N 2(9) 2(¢)
u(t) >\ Z Y y(t)

R = | I T
7o = | 7o | Design of consensus networks can
E(T)T 7.0y = E(C) be viewed as a state-feedback problem

Le (T)R(T,C)RC(FT,C) — Le(T) T Le(T)T(Tvc)Tg;-vc)
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Effective Resistance of a Graph

The effective resistance between two nodes u and v is the
electrical resistance measured across the nodes when the
graph represents an electrical circuit with each edge a resistor

: Cg :
u®  wy W
U Tk

i edge weights are the

Tk = wi. conductance of each resistor
TFuv = (eu — ev)TLT (g)(eu — ev)
1Kg|369ig and Randic _ [LT (g)]uu — 9 [LT (g)]uv + [LT (g)}vv
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Effective Resistance of a Graph

Proposition 1

LT(g) — (EL) (R(T C>WR(7' C))

1

Fuv = (eu — efu)TLT (g)(eu — ev)
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‘Ho Performance and Effective Resistance

Consensus driven by WGN

—L(G)x(t) + w(t)
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relative states
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Edge Agreement....

{ Tr(t) = —Less(G)r-(t) + E(T)  w(t)
2(t) = E(Kn) E(T)Le(T) 2 (t)
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‘Ho Performance and Effective Resistance

Edge Agreement....
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