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last time…

• H2 system performance 
•  performance depends on structure 

of graph (i.e., cycles) 
•  relation to effective resistance

Performance of Consensus

∫

−E(G)

E(G)T⊕ ⊕u(t) y(t)

w(t)

v(t)

z(t)

u

v
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Design of Networks

graph-theoretic properties that 
influence system performance

• spanning trees, rooted out-
branchings 

•  algebraic connectivity 
•  cycles 
•  graph symmetry
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The Modern Control Paradigm
z(t)

u(t) y(t)

K

min
K

k⌃clkp

s.t. K is stabilizing
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The Modern Control Paradigm
The (infinite-horizon) Linear Quadratic Regulator (LQR)

min
x,u

R1
0 (xT

Qx+ u

T

Ru)dt
s.t. ẋ = Ax+Bu

x(0) = x0

linear state-feedback is the optimal solution

u(t) = Kx(t)

ẋ(t) = (A+BK)x(t)

•infinite dimensional
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The Modern Control Paradigm
Optimal       ControlH2

minW,X,Z trace[W ]

s.t.
⇥
A Bu

⇤  X
Z

�
+
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X ZT

⇤  AT
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�
+ ��T < 0
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2X +R
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�
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⌃ CyBu

K

x(t) y(t)u(t)

z(t)

⌃

Q
1
2

R
1
2

Dv
w(t)

v(t)

⌃

�

min
K

k⌃clkp

s.t. K is stabilizing

equivalent to LQR 
solution!

•finite dimensional
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Static Optimization
A static optimization problem

convex v. non-convex

Prof. R. T. Rockafellar 

“…in fact, the great watershed in optimization !
isn’t between linearity and non-linearity, but !
convexity and non-convexity” 

min
x

f(x)

s.t.

8
<

:

gi(x) � 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , r
x ⇥ X
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Convex Optimization
when objective function is convex min

x

f(x)

s.t.

8
<

:

gi(x) � 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , r
x ⇥ X

•any local minima is a 
global minimum

non-convex - “local” minima convex - “local” minima is global
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Convex Optimization

a real valued function f : Rn ! R is convex if for any two points x1, x2 2 Rn

and for any � 2 [0, 1], the following inequality holds:

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2)

Definition
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Convex Optimization
Definition

convex non-convex

A set S ✓ Rn
is convex if for all x, y 2 S and � 2 [0, 1],

the point (1� �)x+ �y 2 S.
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Convex Optimization
A static optimization problem

convex if:

min
x

f(x)

s.t.

8
<

:

gi(x) � 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , r
x ⇥ X

f(x)

gi(x), i = 1, . . . ,m

hj(x), j = 1, . . . , r

X

are all convex
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Convex Optimization
semi-definite programming (SDP)

min
x

c

T

x

s.t. F (x) = F0 +
P

m

i=1 xi

F

i

� 0

Fi - symmetric matrices

F (x) � 0 , z

T
F (x)z � 0, 8z - Linear Matrix Inequality (LMI)

A � B , A�B � 0


A B
BT C

�
� 0, C > 0 , A�BC�1BT � 0

- positive (semi) definite ordering

- Schur 
Complement
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Non-Convex Optimization
integer programming

optimization variable is 
constrained to be an integer

example: 

min
x

c

T

x

s.t. Ax  b

x 2 Zn

x � {0, 1}
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Minimum Weight Spanning Tree
problem data:

goal:  Find a spanning tree of 
minimum weight

•a connected and undirected graph 
•positive weights on each edge

G = (V, E ,W)

min
T

X

e2T

we

s.t.T � T
T - set of all spanning trees
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Minimum Weight Spanning Tree
solution:  Kruskal’s Algorithmmin

T

X

e2T

we

s.t.T � T
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A. Topology Design

We now consider the synthesis of the underlying connection
topology and where to place agents within that topology. As we
are only considering the topology, we use the following hetero-
geneous state-space model for the RSN

(4.22)

We would like to find topologies that minimize the effect of
disturbances entering each agent on the relative sensed output of
the entire system, that is minimizing the performance objective

. This can be considered a problem in combinatorial
optimization [24], as the decision to include an edge in the graph
is binary. The general synthesis problem can be written as

The challenge, therefore, is to find numerically tractable al-
gorithms to solve (4.23). In what follows, we show that the
topology synthesis problem can be solved using the celebrated
Kruskal’s algorithm for finding a minimum weight spanning
tree when . For , we solve a variation of (4.23)
that minimizes the robust performance of a weighted version of
(4.22) with uncertainty on the edge weights.

1) Topology Design: Recall from Section III-A that in
terms of the norm objective, an optimal topology should
always correspond to a spanning tree. The design problem,
therefore, is to determine which spanning tree will achieve the
smallest norm for the RSN (4.22).

The design of the topology reduces to the design of the inci-
dence matrix, . This problem is combinatorial in nature, as
there are only a finite number of graphs that can be constructed
from a set of nodes. As the number of agents in the RSN be-
comes large, solving this problem becomes prohibitively hard
[24]. However, we find that with an appropriate modification of
the problem statement, results from combinatorial optimization
can be used, leading to a polynomial-time algorithm.

Specifically, the minimum spanning tree (MST) problem can
be adapted to solve (4.23). The MST can be efficiently solved
using Kruskal’s algorithm in time. The proce-
dure is given in Algorithm 1 and a proof of its correctness can
be found, for example, in [24].

Algorithm 1: Kruskal’s Algorithm

Data: A connected undirected graph and weights
.

Result: A spanning tree of minimum weight.

begin

Sort the edges such that

, where

Set

for to do

if contains no cycle then

set

In order to apply the MST to the synthesis problem we
must reformulate the original problem statement. To begin, we
first write the expression for the norm of the system in (4.22)
as ,
where is the map from the exogenous input entering agent

to its position, . We reiterate here that the RSN norm
description is related to the degree of each node in the network.
Using the weighted incidence graph interpretation of the norm,
as in (3.14), we see that the gain of each agent, , acts
as a weight on the nodes.

As each agent is assumed to have fixed dynamics, the problem
of minimizing the RSN norm reduces to finding the degree
of each agent while ensuring that the resulting topology is a
spanning tree. This objective is related to properties of the nodes
of the graph. To use the MST results, we must convert the ob-
jective from weights on the nodes to weights on the edges.

To develop this transformation, consider the graph
with fixed weights on each node .

The node-weighted Frobenius norm of the incidence matrix is
then , where .
Next, consider the effect of adding an edge to
in terms of the Frobenius norm of the augmented incidence
matrix, , where
represents the degree of node before adding the new edge .
This shows that each edge contributes to
the overall norm. Therefore, weights on the edges, which we
denote as , can be constructed by adding the node
weights, denoted as , corresponding to the
nodes adjacent to each edge as, .

This result can be used to generate an equivalent characteri-
zation of the -norm

(4.23)

where .
Using the above transformation from node weights to edge

weights, we arrive at the following result.
Theorem 4.1: The connection topology that minimizes

the norm of (4.22), can be found using Kruskal’s
MST algorithm with input data , and edge weights

.
Proof: The proof follows from Theorem 3.3 and the trans-

formation from node weights to edge weights.
Remark 4.2: The choice of the input graph may be applica-

tion specific, and can capture certain communication or sensing
constraints between agents. For example, one may consider a
scenario where agents are randomly distributed, e.g., as a geo-
metric random graph, upon deployment and can then only sense
neighboring agents within a specified range. The results of The-
orem 4.1 can be used to determine the optimal spanning tree for
that initial configuration.

Remark 4.3: There are a number of distributed algorithms
for solving the MST problem [3], [13]. These could be used
in place of the centralized version when the optimal spanning
tree topology needs to be reconfigured. This scenario can arise
due to the initialization problem discussed in Remark 4.2, or in
situations when certain agents are disabled, lost, or reallocated
for different mission purposes.

a greedy algorithm

O(|E| log |V|)
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Design of RSN Sensing Graphs
Relative Sensing Network with 
heterogeneous agent dynamics

⌃i :

⇢
ẋi(t) = Aixi(t) +Biw(t)
yi(t) = Cixi(t)

i = 1, . . . , n

z(t) = (E(G)T ⌦ Iq)

2

64
C1

. . .
Cn

3

75x(t)

relative outputs (on edges)

⌃1

. . .
⌃n

E(G)T
z(t)w(t)

⌃(G)
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Matrix Kronecker Product

A�B =

2

64
a11B · · · a1mB
...

. . .
...

an1B · · · anmB

3

75
A 2 Rn⇥m

B 2 Rp⇥q
2 Rnp⇥mq

examples

2

64
A

. . .
A

3

75 = I ⌦A

n ⌦

2

4
x1

x2

x3

3

5 =

2

6666666666666664

x1

x2

x3

x1

x2

x3
...
x1

x2

x3

3

7777777777777775
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Matrix Kronecker Product

A�B =

2

64
a11B · · · a1mB
...

. . .
...

an1B · · · anmB

3

75
A 2 Rn⇥m

B 2 Rp⇥q
2 Rnp⇥mq

properties

(A⌦B)(C ⌦D) = (AC ⌦BD)

A = UA�AV
T
A

B = UB�BV
T
B

(A⌦B) = (UA ⌦ UB)(�A ⌦ �B)(VA ⌦ VB)
T
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Design of RSN Sensing Graphs
Performance of each agent

k⌃ik22 = tr[CiPiCT
i ]

AiPi + PiA
T
i +BiB

T
i = 0

Theorem 
k⌃(G)k22 =

nX

i=1

dik⌃ik22

how to design a connected sensing  
graph with smallest      performance?H2
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Design of RSN Sensing Graphs
a synthesis problem

min
G

k⌃(G)k22
s.t. G ⇢ G, G connected

a combinatorial optimization problem!

Theorem 
The RSN synthesis problem is equivalent 
to the minimum weight spanning tree problem.

proof

convert objective function to an equivalent 
function on the weights of an associated weighted graph
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Design of Cycles in Consensus

∫

−E(G)

E(G)T⊕ ⊕u(t) y(t)

w(t)

v(t)

z(t)WGN

control

controlled  
variable

measured 
output

Given a nominal graph, we would like to add 
a fixed number of edges that lead to the largest 
improvement in the      performance of the system.         H2
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Cycles as Feedback

Le(T )R(T ,C)R
T
(T ,C) = Le(T ) + Le(T )T(T ,C)T

T
(T ,C)

R(T ,C) =
[
I T(T ,C)

]

E(T )T(T ,C) = E(C)
Design of consensus networks can  

be viewed as a state-feedback problem

Σe(T )

[
w(t)
v(t)

]

z(t)

u(t)

T(T ,C)T
T
(T ,C)

⌃(G)
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Cycles as Feedback

Le(T )R(T ,C)R
T
(T ,C) = Le(T ) + Le(T )T(T ,C)T

T
(T ,C)

R(T ,C) =
[
I T(T ,C)

]

E(T )T(T ,C) = E(C)
Design of consensus networks can  

be viewed as a state-feedback problem

z(t)

u(t) y(t)

K
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Design of Cycles in Consensus

min
T(T ,C)∈R|V|×k

∥Σe(G)∥2,

A synthesis problem

Σe(T )

[
w(t)
v(t)

]

z(t)

u(t)

T(T ,C)T
T
(T ,C)
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Design of Cycles

Σe(T )

[
w(t)
v(t)

]

z(t)

u(t)

T(T ,C)T
T
(T ,C)

min
T(T ,C)∈R|V|×k

∥Σe(G)∥2,

Given a spanning tree, add k edges that 
maximize the performance improvement

min
M,wi

trace [M ]

s.t.

�
M I
I I + T(T ,T )WT(T ,T )

�
� 0

�

i

wi = k, wi � {0, 1}

a mixed-integer SDP
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Design of Cycles

min
M,wi

trace [M ]

s.t.

�
M I
I I + T(T ,T )WT(T ,T )

�
� 0

�

i

wi = k, wi � {0, 1}

a mixed-integer SDP

relaxation to weighted 
edges “misses the point”

wi 2 [0, 1]

min
M,wi

trace [M ]

s.t.

�
M I
I I + T(T ,T )WT(T ,T )

�
� 0

�

i

wi = k, wi � {0, 1}

min
M,wi

trace[M ] + card(w)

wi 2 [0, 1]

attempt to minimize “# of 
non-zero elements”

not a convex relaxation!
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Convex Envelope of Cardinality

Definition. The convex envelope, fenv
, of a function f

on a set C is the (point-wise) largest convex function that

is an under estimator of f on C.

example

kxk1 =

P
i |xi| is convex envelope of card(x).

1

x

f(x)

1�1

card(x)

kxk1
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Sparsity Promoting Optimization

feasible set

F ∗

feasible set

F ∗

feasible set

F ∗

feasible set

F ∗

min
x�X

�x�2 min
x�X

�x�1 min
x�X

�

i

mi|xi| min
x�X

�x�p

✴convex optimization 
✴not sparse

✴convex optimization 
✴sparse for LP

✴convex optimization 
✴sparse for SDP

✴non-convex 
✴sparse 

re-weighted l-1 minimization algorithm 
[Candes 2008]
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Design of Cycles

Σe(T )

[
w(t)
v(t)

]

z(t)

u(t)

T(T ,C)T
T
(T ,C)

min
T(T ,C)∈R|V|×k

∥Σe(G)∥2,

Given a spanning tree, add k edges that 
maximize the performance improvement

min
M,wi

�trace [M ] + (1 � �)
�

i

miwi

s.t.

�
M I
I I + T(T ,T )WT(T ,T )

�
� 0

�

i

wi = k, 0 � wi � 1.
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Design of Cycles

min
M,wi

�trace [M ] + (1 � �)
�

i

miwi

s.t.

�
M I
I I + T(T ,T )WT(T ,T )

�
� 0

�

i

wi = k, 0 � wi � 1.

Re-weighted l-1 minimization algorithm

1 set counterh = 0

choose initial weights for each edge m
(0)
i

2 solve convex program - obtain optimal weights
(h)

3 update weights m(h+1)
i = (w(h)

i + ⌫)�1

w(h)
i

4
terminate on convergence, or 
increment counter and go to step 2 [Candes 2008]

combinatorial 
insights used here!
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Simulation Examples

spanning tree  
30 nodes 

741 candidate 
edges 

add 40 new 
edges 

∥Σ(T )∥22 = 58.5

∥Σ(Kn)∥22 = 39.975
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Simulation Examples
weights can be used to 
promote certain graph 
properties

“long cycle weights”

mi = diam(G)− ∥ci∥1 + 1

∥Σ(G)∥22 = 50.233
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Simulation Examples
weights can be used to 
promote certain graph 
properties

“short cycle weights”

mi = ∥ci∥1

∥Σ(G)∥22 = 48.704
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Simulation Examples
weights can be used to 
promote certain graph 
properties

“cycle correlation weights”

mi =
1

|Ec|
∑

j ̸=i

∣∣∣
[
T(T ,C)T

T
(T ,C)

]
ij

∣∣∣

∥Σ(G)∥22 = 48.939
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Simulation Examples

weights can be used to 
promote certain graph 
properties


