

Analysis and Control of Multi-Agent Systems

Daniel Zelazo Faculty of Aerospace Engineering Technion-Israel Institute of Technology

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Network Synthesis

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

last time...

Performance of Consensus

- H2 system performance
- performance depends on structure of graph (i.e., cycles)
- relation to effective resistance

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Design of Networks

graph-theoretic properties that influence system performance

- spanning trees, rooted outbranchings
- algebraic connectivity
- cycles
- graph symmetry

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Modern Control Paradigm

 $\min_{K} \|\Sigma_{cl}\|_p$

s.t. K is stabilizing

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Modern Control Paradigm

The (infinite-horizon) Linear Quadratic Regulator (LQR)

$$\min_{x,u} \quad \int_0^\infty (x^T Q x + u^T R u) dt \\ \text{s.t.} \qquad \dot{x} = A x + B u \\ x(0) = x_0$$

linear state-feedback is the optimal solution

$$u(t) = Kx(t)$$

$$\dot{x}(t) = (A + BK)x(t)$$

infinite dimensional

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Modern Control Paradigm

Optimal \mathcal{H}_2 Control

$$\begin{split} \min_{W,X,Z} & \operatorname{trace}[W] \\ s.t. & \begin{bmatrix} A & B_u \end{bmatrix} \begin{bmatrix} X \\ Z \end{bmatrix} + \begin{bmatrix} X & Z^T \end{bmatrix} \begin{bmatrix} A^T \\ B_u^T \end{bmatrix} + \Gamma\Gamma^T < 0 \\ & \begin{bmatrix} X & (Q^{\frac{1}{2}}X + R^{\frac{1}{2}}Z)^T \\ (Q^{\frac{1}{2}}X + R^{\frac{1}{2}}Z) & W \end{bmatrix} > 0 \end{split}$$

 $\min_{K} \|\Sigma_{cl}\|_p$

s.t. K is stabilizing

equivalent to LQR solution!

• finite dimensional

Analysis and Control of Multi-Agent Systems University of Stuttgart, 2014

Static Optimization

A static optimization problem

$$\min_{x} f(x)$$

s.t.
$$\begin{cases} g_i(x) \le 0, & i = 1, \dots, m \\ h_j(x) = 0, & j = 1, \dots, r \\ x \in \mathcal{X} \end{cases}$$

convex v. non-convex

"...in fact, the great watershed in optimization isn't between linearity and non-linearity, but convexity and non-convexity"

Prof. R. T. Rockafellar

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

when objective function is convex

 $\min_{x} f(x)$

• any local minima is a global minimum

non-convex - "local" minima

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering convex - "local" minima is global

Definition

a real valued function $f : \mathbb{R}^n \to \mathbb{R}$ is *convex* if for any two points $x_1, x_2 \in \mathbb{R}^n$ and for any $\lambda \in [0, 1]$, the following inequality holds:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Definition

A set $S \subseteq \mathbb{R}^n$ is *convex* if for all $x, y \in S$ and $\lambda \in [0, 1]$, the point $(1 - \lambda)x + \lambda y \in S$.

convex

non-convex

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A static optimization problem

$$\min_{x} f(x)$$

s.t.
$$\begin{cases} g_i(x) \le 0, & i = 1, \dots, m \\ h_j(x) = 0, & j = 1, \dots, r \\ x \in \mathcal{X} \end{cases}$$

convex if:

$$f(x)$$

$$g_i(x), i = 1, \dots, m$$

$$h_j(x), j = 1, \dots, r$$
are all convex
$$\mathcal{X}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

semi-definite programming (SDP)

$$\min_{x} \qquad c^{T}x$$

s.t.
$$F(x) = F_0 + \sum_{i=1}^{m} x_i F_i \ge 0$$

F_i - symmetric matrices

 $F(x) \ge 0 \Leftrightarrow z^T F(x) z \ge 0, \forall z \text{ - Linear Matrix Inequality (LMI)}$

 $A \ge B \Leftrightarrow A - B \ge 0$ - positive (semi) definite ordering

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \ge 0, \ C > 0 \Leftrightarrow A - BC^{-1}B^T \ge 0 \quad \text{-Schur} \\ \text{Complement}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

 \min_x

integer programming

optimization variable is constrained to be an integer

example: $x \in \{0, 1\}$

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

Minimum Weight Spanning Tree

problem data:

- a connected and undirected graph
- positive weights on each edge

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$

goal: Find a spanning tree of minimum weight

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Analysis and Control of Multi-Agent Systems University of Stuttgart, 2014

 \mathcal{T} - set of all spanning trees

Minimum Weight Spanning Tree

 $\min_{T} \sum_{e \in T} w_e$ s.t. $T \in \mathcal{T}$ solution: Kruskal's Algorithm

Algorithm 1: Kruskal's Algorithm

Data: A connected undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ and weights $w : \mathcal{E} \mapsto \mathbb{R}$.

Result: A spanning tree \mathcal{G}_t of minimum weight.

begin

Sort the edges such that

$$w(e_1) \le w(e_2) \le \dots \le w(e_{|\mathcal{E}|})$$
, where $e_i \in \mathcal{E}$
Set $\mathcal{G}_t := \mathcal{G}_t(\mathcal{V}, \emptyset)$

for i := 1 to $|\mathcal{E}|$ do

if $\mathcal{G}_t + e_i$ contains no cycle then

set
$$\mathcal{G}_t := \mathcal{G}_t + e_i$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Design of RSN Sensing Graphs

Relative Sensing Network with heterogeneous agent dynamics

$$\Sigma_i : \begin{cases} \dot{x}_i(t) = A_i x_i(t) + B_i w(t) \\ y_i(t) = C_i x_i(t) \end{cases} \quad i = 1, \dots, n$$

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

Matrix Kronecker Product

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Matrix Kronecker Product

$$A \in \mathbb{R}^{n \times m} A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1m}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nm}B \end{bmatrix} \in \mathbb{R}^{np \times mq}$$

properties $(A \otimes B)(C \otimes D) = (AC \otimes BD)$ $A = U_A \Sigma_A V_A^T$ $B = U_B \Sigma_B V_B^T$ $(A \otimes B) = (U_A \otimes U_B)(\Sigma_A \otimes \Sigma_B)(V_A \otimes V_B)^T$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Design of RSN Sensing Graphs

Performance of each agent

$$\|\Sigma_i\|_2^2 = \operatorname{tr}[C_i P_i C_i^T]$$
$$A_i P_i + P_i A_i^T + B_i B_i^T = 0$$

how to *design* a connected sensing graph with smallest \mathcal{H}_2 performance?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Design of RSN Sensing Graphs

a synthesis problem

$$\min_{\mathcal{G}} \|\Sigma(\mathcal{G})\|_2^2$$

s.t. $\mathcal{G} \subset \mathbf{G}, \ \mathcal{G} \text{ connected}$

a *combinatorial* optimization problem!

Theorem

The RSN synthesis problem is equivalent to the minimum weight spanning tree problem.

proof

convert objective function to an equivalent function on the weights of an associated weighted graph

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Design of Cycles in Consensus

Given a nominal graph, we would like to add a fixed number of edges that lead to the largest improvement in the \mathcal{H}_2 performance of the system.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Cycles as Feedback

 $L_e(\mathcal{T})R_{(\mathcal{T},\mathcal{C})}R_{(\mathcal{T},\mathcal{C})}^{T} = L_e(\mathcal{T}) + L_e(\mathcal{T})T_{(\mathcal{T},\mathcal{C})}T_{(\mathcal{T},\mathcal{C})}^{T}$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Cycles as Feedback

 $R_{(\mathcal{T},\mathcal{C})} = \begin{bmatrix} I & T_{(\mathcal{T},\mathcal{C})} \end{bmatrix}$ $E(\mathcal{T})T_{(\mathcal{T},\mathcal{C})} = E(\mathcal{C})$ Design of consensus networks can be viewed as a state-feedback problem

$$L_e(\mathcal{T})R_{(\mathcal{T},\mathcal{C})}R_{(\mathcal{T},\mathcal{C})}^T = L_e(\mathcal{T}) + L_e(\mathcal{T})T_{(\mathcal{T},\mathcal{C})}T_{(\mathcal{T},\mathcal{C})}^T$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Design of Cycles in Consensus

A synthesis problem $\min_{T_{(\mathcal{T},\mathcal{C})} \in \mathbb{R}^{|\mathcal{V}| \times k}} \|\Sigma_e(\mathcal{G})\|_2,$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Design of Cycles

 $\min_{T_{(\mathcal{T},\mathcal{C})}\in\mathbb{R}^{|\mathcal{V}|\times k}} \|\Sigma_e(\mathcal{G})\|_2,$

Given a spanning tree, add **k** edges that maximize the performance improvement

a mixed-integer SDP

 $\min_{M,w_i} \quad \operatorname{trace} [M]$ s.t. $\begin{bmatrix} M & I \\ I & I + T_{(\mathcal{T},\overline{\mathcal{T}})}WT_{(\mathcal{T},\overline{\mathcal{T}})} \end{bmatrix} \ge 0$ $\sum_i w_i = k, \ w_i \in \{0,1\}$

Design of Cycles

a mixed-integer SDP

$$\begin{split} \min_{M,w_{i}} & \operatorname{trace}\left[M\right] \\ \text{s.t.} & \begin{bmatrix} M & I \\ I & I + T_{(\mathcal{T},\overline{\mathcal{T}})}WT_{(\mathcal{T},\overline{\mathcal{T}})} \end{bmatrix} \geq 0 \\ & \sum_{i} w_{i} = k, \ w_{i} \in \{0,1\} \quad w_{i} \in \left[0,1\right] \quad \stackrel{\text{re}}{\text{ec}} \\ \min_{M,w_{i}} & \operatorname{trace}[M] + \operatorname{card}(w) & & \text{at} \\ \text{s.t.} & \begin{bmatrix} M & I \\ I & I + T_{(\mathcal{T},\overline{\mathcal{T}})}WT_{(\mathcal{T},\overline{\mathcal{T}})} \end{bmatrix} \geq 0 \\ & \sum_{i} w_{i} = k, \ w_{i} \in \left[0,1\right] & & \text{nc} \end{split}$$

relaxation to *weighted* edges "misses the point"

attempt to minimize "# of non-zero elements"

not a convex relaxation!

Convex Envelope of Cardinality

Definition. The convex envelope, f^{env} , of a function f on a set C is the (point-wise) largest convex function that is an under estimator of f on C.

example

Sparsity Promoting Optimization

re-weighted *I*-1 minimization algorithm [Candes 2008]

Design of Cycles

 $\min_{T_{(\mathcal{T},\mathcal{C})}\in\mathbb{R}^{|\mathcal{V}|\times k}} \|\Sigma_e(\mathcal{G})\|_2,$

Given a spanning tree, add **k** edges that maximize the performance improvement

$$\min_{M,w_i} \quad \alpha \operatorname{trace} \left[M\right] + (1-\alpha) \sum_i m_i w_i \\ \text{s.t.} \quad \left[\begin{array}{cc} M & I \\ I & I + T_{(\mathcal{T},\overline{\mathcal{T}})} W T_{(\mathcal{T},\overline{\mathcal{T}})} \end{array} \right] \ge 0 \\ \sum_i w_i = k, \quad 0 \le w_i \le 1.$$

Design of Cycles

Re-weighted *I*-1 minimization algorithm

(1) set counter
$$h = 0$$

choose initial weights for each edge $m_i^{(0)}$ combinatorial
insights used here!
(2) solve convex program - obtain optimal weights $w_i^{(h)}$

$$\begin{array}{c} \min_{M,w_i} & \alpha \operatorname{trace}[M] + (1 - \alpha) \sum_i m_i^{(h)} w_i \\ \text{s.t.} & \left[\begin{array}{c} M & I \\ I & I + T_{(\mathcal{T},\overline{\mathcal{T}})} W T_{(\mathcal{T},\overline{\mathcal{T}})} \end{array} \right] \ge 0 \\ \sum_i w_i = k, \quad 0 \le w_i \le 1. \end{array}$$
(3) update weights $m_i^{(h+1)} = (w_i^{(h)} + \nu)^{-1}$
(4) terminate on convergence, or

[Candes 2008]

spanning tree 30 nodes

741 candidate edges

add 40 new edges

weights can be used to promote certain graph properties

"long cycle weights" $m_i = \operatorname{diam}(\mathcal{G}) - \|c_i\|_1 + 1$ $\|\Sigma(\mathcal{G})\|_2^2 = 50.233$

weights can be used to promote certain graph properties

"short cycle weights"

$$m_i = \|c_i\|_1$$

 $\|\Sigma(\mathcal{G})\|_2^2 = 48.704$

weights can be used to promote certain graph properties

"cycle correlation weights"

$$m_i = \frac{1}{|\mathcal{E}_c|} \sum_{j \neq i} \left| \left[T_{(\tau,c)} T_{(\tau,c)}^T \right]_{ij} \right|$$
$$\|\Sigma(\mathcal{G})\|_2^2 = 48.939$$

weights can be used to promote certain graph properties

ה וחלל Facul