

Analysis and Control of Multi-Agent Systems

Daniel Zelazo

Faculty of Aerospace Engineering Technion-Israel Institute of Technology

Graph Rigidity and Formation Control

Formation Control and Graph Rigidity

Graphs are a natural tool for describing formations!

but we must remember an important point...

is the same as this one...

the graphs we "draw" have no relation to "Euclidean space"

solution: formulate a language to "embed" a graph into Euclidean space

A framework is a pair (\mathcal{G}, p)

$$\begin{cases} \mathcal{G} = (\mathcal{V}, \mathcal{E}) \\ p : \mathcal{V} \to \mathbb{R}^2 \end{cases}$$

maps every vertex to a point in the plane

bar-and-joint frameworks

$$\begin{cases} \mathcal{G} = (\mathcal{V}, \mathcal{E}) \\ p : \mathcal{V} \to \mathbb{R}^2 \end{cases}$$

maps every vertex to a point in the plane

Two frameworks are equivalent if

$$(\mathcal{G}, p_0)$$
 (\mathcal{G}, p_1)

Two frameworks are congruent if

$$(\mathcal{G}, p_0)$$
 (\mathcal{G}, p_1)

$$||p_0(v_i) - p_0(v_j)|| = ||p_1(v_i) - p_1(v_j)||$$

$$\forall \{v_i, v_j\} \in \mathcal{E}$$

$$||p_0(v_i) - p_0(v_j)|| = ||p_1(v_i) - p_1(v_j)||$$

$$\forall v_i, v_j \in \mathcal{V}$$

Frameworks are equivalent but not congruent!

Definition

A framework (\mathcal{G}, p_0) is globally rigid if every framework that is equivalent to (\mathcal{G}, p_0) is congruent to (\mathcal{G}, p_0) .

frameworks that are both *equivalent* and *congruent* are related by only "trivial" motions

- translations
- rotations

Definition

A framework (\mathcal{G}, p_0) is *rigid* if there exists an $\epsilon > 0$ such that every framework (\mathcal{G}, p_1) that is equivalent to (\mathcal{G}, p_0) and satisfies $||p_0(v) - p_1(v)|| < \epsilon$ for all $v \in \mathcal{V}$, is congruent to (\mathcal{G}, p_0) .

Definition

A minimally rigid framework is a rigid framework (\mathcal{G}, p_0) such that the removal of any edge in \mathcal{G} results in a non-rigid framework.

parameterizing frameworks by a variable representing "time" allows to consider "motions" of a framework (\mathcal{G},p,t)

A trajectory is edge consistent if ||p(v,t)-p(u,t)|| is constant for all $\{v,u\} \in \mathcal{E}$ and all t.

edge consistent trajectories generate a family of equivalent frameworks

$$\{p(u) \in \mathbb{R}^2 \mid ||p(u) - p(v)||_2^2 = \ell_{uv}^2, \, \forall \{u, v\} \in \mathcal{E}\}$$

$$\Rightarrow \frac{d}{dt} ||x_u(t) - x_v(t)|| = 0, \, \forall \{u, v\} \in \mathcal{E}$$

$$\Rightarrow (\dot{x}_u(t) - \dot{x}_v(t))^T (x_u(t) - x_v(t)) = 0$$
 infinitesimal motions

Definition

A framework is *infinitesimally rigid* if every infinitesimal motion is *trivial*

Definition

A *graph* is *generically rigid* if it has an infinitesimally rigid framework realization

generic rigidity is a property of the graph!

 $p(v_2,t)$ $p(v_1,t)$ 3 $p(v_2, t_0)$ 2 $p(v_3,t)$ $p(v_4,t)$ $p(v_4, t_0)$ $p(v_1, t_0)$ $p(v_3,t_0)$

How can we check if a graph is generically or infinitesimally rigid?

How can we construct generically rigid graphs?

Definition. A Laman graph is a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $|\mathcal{E}| = 2|\mathcal{V}| - 3$ such that all subgraphs of k vertices has at most 2k - 3 edges.

Theorem. A graph is generically minimally rigid in \mathbb{R}^2 if and only if it is a Laman graph.

a combinatorial property! (i.e., hard to check)

Henneberg Constructions (1911) - a constructive method for generating all minimally generically rigid graphs in the plane

- vertex addition
- edge spliting

Example

Example

Vertex Addition

Example

Vertex Addition

Example

Example

Edge Splitting

Analysis and Control of Multi-Agent Systems

University of Stuttgart, 2014

Example

Example

Example

Example

Example

infinitesimal motions define a system of equations...

$$(\xi(v_i) - \xi(v_j))^T (p(v_i) - p(v_j)) = 0$$

The Rigidity Matrix

$$R(p) \in \mathbb{R}^{|\mathcal{E}| \times 2|\mathcal{V}|}$$

$$R(p) = \begin{bmatrix} p_1^x - p_2^x & p_1^y - p_2^y & p_2^x - p_1^x & p_2^y - p_1^y & 0 & 0 \\ p_1^x - p_3^x & p_1^y - p_3^y & 0 & 0 & p_3^x - p_1^x & p_3^y - p_1^y \\ 0 & 0 & p_2^x - p_3^x & p_2^y - p_3^y & p_3^x - p_2^x & p_3^y - p_2^y \end{bmatrix}$$

Lemma 1 (Tay1984) A framework (\mathcal{G}, p) is infinitesimally rigid if and only if $\mathbf{rk}[R] = 2|\mathcal{V}| - 3$

The Rigidity Matrix

$$R(p) \in \mathbb{R}^{|\mathcal{E}| imes 2|\mathcal{V}|}$$
 the "local" graph from the perspective of a single agent $E(\mathcal{G}_{v_i})$ local incidence matrix

The Rigidity Matrix

$$R(p) \in \mathbb{R}^{|\mathcal{E}| \times 2|\mathcal{V}|}$$

'local' incidence matrices

$$E(\mathcal{G}_1) = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \qquad E(\mathcal{G}_2) = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \qquad E(\mathcal{G}_3) = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$E(\mathcal{G}_2) = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$E(\mathcal{G}_3) = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$R(p) = \begin{bmatrix} E(\mathcal{G}_1) & \cdots & E(\mathcal{G}_{|\mathcal{V}|}) \end{bmatrix} (I_{\mathcal{V}} \otimes p^{(x,y)})$$

The Symmetric Rigidity Matrix

$$\mathcal{R} = R(p)^T R(p)$$

 λ_A the Rigidity Eigenvalue

a symmetric positive semi-definite matrix with eigenvalues

$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{2|\mathcal{V}|}$$

Theorem A framework is infinitesimally rigid if and only if the rigidity eigenvalue is strictly positive; i.e., $\lambda_4 > 0$.

proof:
$$P\mathcal{R}P^T = (I_2 \otimes E(\mathcal{G})) \begin{bmatrix} W_x & W_{xy} \\ W_{xy} & W_y \end{bmatrix} (I_2 \otimes E(\mathcal{G})^T)$$

use properties of incidence matrix to show first three eigenvalues must be at the origin

