

Analysis and Control of Multi-Agent Systems

Daniel Zelazo Faculty of Aerospace Engineering Technion-Israel Institute of Technology

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graph Rigidity and Formation Control

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Graph Rigidity

another approach...

Edge 'Distance' Function

$$f(p) = \frac{1}{2} \begin{bmatrix} \vdots \\ \|p(v_i) - p(v_j)\|^2 \\ \vdots \end{bmatrix} \in \mathbb{R}^{|\mathcal{E}|}$$

$$\{v_i, v_j\} \in \mathcal{E}$$

the rigidity matrix is the 'linear' term in a Taylor series expansion of the edge function!

$$f(p+\delta_p) = f(p) + \frac{\partial f(p)}{\partial p} \delta_p + h.o.t.$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering The Rigidity Matrix $R(p) = \frac{\partial f(p)}{\partial p}$

Graph Rigidity

Edge 'Distance' Function

$$f(p) = \frac{1}{2} \begin{bmatrix} \vdots \\ \|p(v_i) - p(v_j)\|^2 \\ \vdots \end{bmatrix} \in \mathbb{R}^{|\mathcal{E}|}$$
$$\{v_i, v_j\} \in \mathcal{E}$$

The Rigidity Matrix
$$R(p) = \frac{\partial f(p)}{\partial p}$$

$$R(p) = \begin{bmatrix} E(\mathcal{G}_1) & \cdots & E(\mathcal{G}_{|\mathcal{V}|}) \end{bmatrix} \left(I_{\mathcal{V}} \otimes p^{(x,y)} \right) \quad \text{(last time)}$$
$$= \begin{bmatrix} \ddots & & & \\ & \underbrace{p(v_i) - p(v_j)}_{e_{ij}} & & \\ & & \ddots \end{bmatrix} \left(E(\mathcal{G})^T \otimes I \right) \quad \text{another form that separates}$$

V

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Analysis and Control of Multi-Agent Systems University of Stuttgart, 2014

the graph from the positions

Graph Rigidity

example...

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

The Rigidity Matrix

Lemma 1 (Tay1984) A framework (\mathcal{G}, p) is infinitesimally rigid if and only if $\mathbf{rk}[R] = 2|\mathcal{V}| - 3$

A framework is *minimally infinitesimally rigid* (MIR) if it is infinitesimally rigid and minimally rigid.

$$\Rightarrow \mathbf{rk}[R(p)] = 2|\mathcal{V}| - 3 = |\mathcal{E}|$$

MIR frameworks have *full row rank*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A *formation* can be specified by inter agent distances

Rigidity is a way to ensure the formation is the desired "shape"

a collection of singleintegrator agents

$$\dot{p}_i(t) = u_i(t)$$
$$p_i(t), u_i(t) \in \mathbb{R}^2$$

a sensing graph

a desired formation

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}) \qquad \Phi = \{ p \in \mathbb{R}^{2|\mathcal{V}|} \mid \|p_i - p_j\|^2 = d_{ij}^2, \forall \{i, j\} \in \mathcal{E} \}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

a desired formation

$$\Phi = \{ p \in \mathbb{R}^{2|\mathcal{V}|} \, | \, \| p_i - p_j \|^2 = d_{ij}^2, \forall \{i, j\} \in \mathcal{E} \}$$

design a distributed control such that

$$\lim_{t \to \infty} \|p_i(t) - p_j(t)\|^2 = d_{ij}^2$$

some notations...

$$e_{ij}(t) = e_k(t) = p_i(t) - p_j(t)$$

$$\lim_{t \to \infty} ||e_k||^2 = d_k^2$$

$$\sigma_k = \|e_k\|^2 - d_k^2 = e_k^T e_k - d_k^2$$

distance error

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Formation Potential

$$F(p) = \frac{1}{4} \sum_{k=1}^{|\mathcal{E}|} \left(\|e_k\|^2 - d_k^2 \right)^2 = \frac{1}{4} \sum_{k=1}^{|\mathcal{E}|} \sigma_k^2$$
$$= \|f(p) - \frac{1}{2} d^2 \|^2$$

A Gradient Dynamical System $\dot{p} = -\nabla F(p)$

what does this system "look" like? what are they equilibrium configurations? are they stable? does this "solve" the formation control problem?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\dot{p} = -\nabla F(p)$$

$$= \frac{\partial F(p)}{\partial p}$$

$$= -\frac{1}{4} \sum_{k=1}^{|\mathcal{E}|} \frac{\partial \sigma_i^2}{\partial p}$$

$$= -\frac{1}{2} \sum_{k=1}^{|\mathcal{E}|} \frac{\partial \sigma_i}{\partial p} \sigma_i$$

$$\dot{p}_i = -\sum_{j \sim i} \left(\|p_j - p_i\|^2 - d_{ij}^2 \right) \left(p_i - p_j \right)$$

"looks" like a (state-dependent) weighted consensus protocol!

$$= -R(p)^T \sigma_i = -R^T(p)R(p)p - R^T(p)d^2$$

symmetric rigidity matrix

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

example... $\dot{p} = -R^{\mathrm{T}}(p)\sigma \iff \dot{p}_i = -\sum_{i=1}^m \sigma_{ii}(p_i - p_i)$ $R(p) = \begin{vmatrix} p_1^{1} - p_2^{1} & p_2^{1} - p_1^{1} & 0 \\ 0 & p_2^{T} - p_3^{T} & p_3^{T} - p_2^{T} \\ n_1^{T} - n_2^{T} & 0 & p_2^{T} - p_1^{T} \end{vmatrix}$ $\begin{array}{c} & & & \\ &$ Odge 3 edge edge 3 Undirected graph (b) An oriented graph $R^{\mathrm{T}}(p)\sigma = \begin{bmatrix} \sigma_1(p_1 - p_2) + \sigma_3(p_1 - p_3) \\ \sigma_1(p_2 - p_1) + \sigma_2(p_2 - p_3) \\ \sigma_2(p_3 - p_2) + \sigma_3(p_3 - p_1) \end{bmatrix}$ Fig. 1: An example to illustrate rigidity matrix.

ix of the oriented graph \mathcal{G}^{σ} .

ble is given in Fig. 1 to illustrate (2). By definition the rigidity matrix of

$$\dot{p} = -R^T(p)R(p)p - R^T(p)d^2$$

what are the equilibrium configurations? $0 = -R^{T}(p)R(p)p - R^{T}(p)d^{2}$

$$\begin{array}{c} \bullet \quad 0 = R(p)p - d^2 \Rightarrow \left(\|p_i - p_j\|^2 - d_{ij}^2 \right) = 0 \\ \text{exactly the equilibrium we want!} \\ \bullet \quad 0 = \left[\begin{array}{c} W_x(p) \\ W_y(p) \end{array} \right] \left(\left[\begin{array}{c} W_x(p) & W_y(p) \end{array} \right] (I_2 \otimes E^T)p - d^2 \right) \\ \bullet \quad 0 = (I_2 \otimes E) \left(\left[\begin{array}{c} W_x(p) \\ W_y(p) \end{array} \right] \left(\left[\begin{array}{c} W_x(p) & W_y(p) \end{array} \right] (I_2 \otimes E^T)p - d^2 \right) \end{array} \right) \\ \end{array}$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\dot{p} = -R^T(p)R(p)p - R^T(p)d^2$$

example...

 $\dot{p}_1 = (\|p_1 - p_2\|^2 - d^2)(p_2 - p_1) + (\|p_1 - p_3\|^2 - d^2)(p_3 - p_1)$ $\dot{p}_2 = (\|p_1 - p_2\|^2 - d^2)(p_1 - p_2) + (\|p_2 - p_3\|^2 - d^2)(p_3 - p_2)$ $\dot{p}_3 = (\|p_1 - p_3\|^2 - d^2)(p_1 - p_3) + (\|p_2 - p_3\|^2 - d^2)(p_2 - p_3)$ d

$$\|p_i - p_j\|^2 = d^2$$

the system has additional 'undesirable' equilibriums

d

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\dot{p} = -R^T(p)R(p)p - R^T(p)d^2$$

example...

$$\dot{p}_1 = (\|p_1 - p_2\|^2 - d^2)(p_2 - p_1) + (\|p_1 - p_3\|^2 - d^2)(p_3 - p_1)$$

$$\dot{p}_2 = (\|p_1 - p_2\|^2 - d^2)(p_1 - p_2) + (\|p_2 - p_3\|^2 - d^2)(p_3 - p_2)$$

$$\dot{p}_3 = (\|p_1 - p_3\|^2 - d^2)(p_1 - p_3) + (\|p_2 - p_3\|^2 - d^2)(p_2 - p_3)$$

linearization about 'desired' equilibrium \overline{p}

$$\dot{\delta p}(t) = -\left(E(\mathcal{G}) \otimes I_2\right) \begin{bmatrix} (\overline{p}_1 - \overline{p}_2)(\overline{p}_1 - \overline{p}_2)^T & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & (\overline{p}_2 - \overline{p}_3)(\overline{p}_2 - \overline{p}_3)^T & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & (\overline{p}_3 - \overline{p}_1)(\overline{p}_3 - \overline{p}_1)^T \end{bmatrix} \left(E(\mathcal{G})^T \otimes I_2\right) \delta p(t),$$

linearized state-matrix has 3 eigenvalues at 0 and remaining eigenvalues are real and negative

we can not conclude stability of equilibrium from linearized model!

 $\left(\|\overline{p}_i - \overline{p}_i\|^2 = d^2\right)$

d

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\dot{p} = -R^T(p)R(p)p - R^T(p)d^2$$

a Lyapunov approach

 $F(p) = \frac{1}{4}\sigma^T \sigma$

recall: the potential function defining a gradient dynamical system can serve as a Lyapunov function candidate!

$$\frac{d}{dt}F(p) = -\sigma^{T}R(p)R^{T}(p)\sigma \leq 0 \quad \text{negative semi-definite}$$

$$1. \ \sigma = 0$$

$$\frac{d}{dt}F(p) = 0 \Leftrightarrow R^{T}(p)\sigma = 0 \quad 2. \begin{bmatrix} \ddots & & \\ & p_{i} - p_{j} & \\ & \ddots & \\ & & \vdots \end{bmatrix} \sigma \in \mathcal{N}[E \otimes I_{2}]$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\dot{p} = -R^T(p)R(p)p - R^T(p)d^2$$

a Lyapunov approach

 $F(p) = \frac{1}{4}\sigma^T \sigma$

recall: the potential function defining a gradient dynamical system can serve as a Lyapunov function candidate!

$$\frac{d}{dt}F(p) = -\sigma^{T}R(p)R^{T}(p)\sigma \leq 0 \quad \text{negative semi-definite}$$

$$1. \ \sigma = 0$$

$$\frac{d}{dt}F(p) = 0 \Leftrightarrow R^{T}(p)\sigma = 0 \quad 2. \begin{bmatrix} \ddots & & \\ & p_{i} - p_{j} & \\ & \ddots & \\ & & & \end{bmatrix} \sigma \in \mathcal{N}[E \otimes I_{2}]$$

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\dot{p} = -R^T(p)R(p)p - R^T(p)d^2$$

Stability and full row rank

a rigidity matrix with full row rank (i.e. minimally infinitesimally rigid framework)

$$\frac{d}{dt}F(p) = -\sigma^T R(p)R^T(p)\sigma \le 0$$

$$\Rightarrow \frac{d}{dt} F(p) = 0 \Leftrightarrow \sigma = 0$$

 $\Leftrightarrow \{\sigma \,|\, R^T(p)\sigma = 0\} = \{0\}$

a positive definite matrix!

Theorem

If the rigidity matrix has full row rank then the distributed distance-based formation control law (exponentially) converges to the specified formation set (locally).

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Exponential stability...

$$\dot{x} = g(x, t)$$

if there exists a positive definite Lyapunov function satisfying

$$\dot{V}(x) = \frac{\partial V(x)}{\partial x} \dot{x} \le -kV(x)$$

then the nonlinear system is exponentially stable.

$$\begin{split} \dot{F}(p) &= -\frac{\sigma^T R(p) R(p)^T \sigma}{F(p)} F(p) \\ &= -\frac{\sigma^T R(p) R(p)^T \sigma}{\frac{1}{4} \sigma^T \sigma} F(p) \leq 4 \lambda_{min} \left(R(p) R(p)^T \right) F(p) \end{split}$$

rigidity eigenvalue!

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

A framework is *minimally infinitesimally rigid* (MIR) if it is infinitesimally rigid and minimally rigid.

$$\Rightarrow \mathbf{rk}[R(p)] = 2|\mathcal{V}| - 3 = |\mathcal{E}|$$

MIR frameworks have *full row rank*

are there other (not infinitesimally rigid) frameworks that have full row rank?

what are the necessary and sufficient conditions needed to ensure the rigidity matrix of a framework has full row rank?

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

Definition

Given a framework (\mathcal{G}, p) , any set of scalars $w_{ij} = w_{ji}$ assigned to each edge of \mathcal{G} is called a *stress* of the framework.

Definition
A stress
$$w = \begin{bmatrix} w_1 & \cdots & w_{|\mathcal{E}|} \end{bmatrix}^T$$
 is called a *self-stress* (or *equilibrium stress*) if

$$\sum_{j \sim i} w_{ij}(p_j - p_i) = 0, \forall i \in \mathcal{V}.$$

self-stresses mean the "forces" applied to a joint by neighboring joints (through the bars) are *balanced*

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

$$\sum w_{ij}(p_j - p_i) = 0, \, \forall i \in \mathcal{V} \Leftrightarrow w^T R(p) = 0$$

 $j\sim i$

proof:
$$\sum_{j \in \mathcal{N}_i} \omega_{ij}(p_j - p_i) = 0, \forall i \in \mathcal{V}$$
$$\Leftrightarrow (E \otimes I_2)(W \otimes I_2)(E^{\mathrm{T}} \otimes I_2)p = 0$$
$$\Leftrightarrow (E \otimes I_2)(W \otimes I_2)e = 0$$
$$\Leftrightarrow (E \otimes I_2)\mathrm{diag}(e_i^{\mathrm{T}})\omega = 0$$
$$\Leftrightarrow R^{\mathrm{T}}(p)\omega = 0$$
$$\Leftrightarrow \omega^{\mathrm{T}}R(p) = 0$$

The space of self-stresses of a framework is the *left-null space* of the rigidity matrix!

Theorem

The rigidity matrix R(p) of a framework (\mathcal{G}, p) has full row rank if and only if (\mathcal{G}, p) only supports zero self-stresses.

verify the following:

The rigidity matrix of a framework for an arbitrary spanning tree graph has full row rank

The rigidity matrix of a framework for a non-collinear cycle graph has full row rank

The rigidity matrix of a rigid framework has full row rank if and only if it is minimally infinitesimally rigid.

הפקולטה להנדסת אוירונוטיקה וחלל Faculty of Aerospace Engineering

which framework has a rigidity matrix with full row rank?

 $\dot{p} = -R^T(p)R(p)p - R^T(p)d^2$

(c) General flexible

(d) MIR

הפקולטה להנדסת אוירונוטיקה וחלל **Faculty of Aerospace Engineering**

