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Graph Rigidity

another approach...

Edge ‘Distance’ Function p(v1)
| ;
f) =5 | lp(vi) = p(vy)?* | € R Y o
- | - plv2) p(v3)
{UZ', Uj} e &
the rigidity matrix is the ‘linear’ term in a The Rigidity Matrix

Taylor series expansion of the edge function!

_ 0f(p)

0f(p) R(p)
f(p+9d,) = f(p) A 5 6p + h.o.t. p Oy
p
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Graph Rigidity

Edge ‘Distance’ Function

| : ' The Rigidity Matrix
’ :
fo) =5 | lp(vi) = p(vy)? | € R ~ 9f(p)
{vi,v;} € &
R(p) — [ E(g1) E(Q|V|) } (IV ®p(x’y)> (last time)

= —> (E(G)" © 1)

€ij
another form that separates
) ) the graph from the positions
Y
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Graph Rigidity

example...
2
- T T T T ]
Py —P2 Py — P Y
__ T T T T
Q%\ 0@3 R(p)_ - 0 - P2 — P3 p%_p%
2 N D1 D3 0 p3s —pi _
1 w0ge 3 : Denote 1 = pa — p1, €2 = p3 — pa, and e3 = p1 — ps.
(a) Undirected - T T -
graph —€1 61T OT
R(p) = 0 —ey e
2 I es 0 —ei ]
N )
Q?Q% 8%\3 - T 7T - -
€1 -1 1 0
< R(p) = . 0o -1 1 ® 1o
1 edge 3 3 .
(b) Oriented _ m 1 = -
graph = diag(e; )(E' ® I,)
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The Rigidity Matrix

The Rigidity Matrix G,p) 1

R(p) = 0f(p) //\ >

Op

p(v2)

Lemma 1 (Tay1984) A framework (G, p) is infinitesimally rigid
if and only if rk[R] = 2|V| — 3

A framework is minimally infinitesimally rigid (MIR) if it is infinitesimally
rigid and minimally rigid.

= rk[R(p)] = 2|V| — 3 = |&] MIR frameworks have

full row rank
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Formation Control

A formation can be specified
by inter agent distances

Rigidity is a way to ensure
the formation is the desired
//Shape//

a collection of single-
Integrator agents

pi(t) = u;(t)
D; (t), WU; (t) - ]R2

a sensing graph a desired formation

G=,8  @={peR®M||pi—p|?=d;,V{ij} €E}
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Formation Control

a desired formation

(I):{pER2|V|H|pZ_ij2 zga\v/{l ]}Eg}

design a distributed : (B o 2 _ g2
control such that tli{go sz (t) P (t) H dw

some notations...
€Z"t —er(t) = Z‘If— (T
O=a®=pO-p0
k={i,j} €& e

O = HQkHZ dy = €k €k — d2 distance error
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Formation Control

Formation Potential

A Gradient Dynamical System
p=—VF(p)

what does this system “look” like?

what are they equilibrium configurations? are they stable?
does this “solve” the formation control problem?
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Formation Control

p=—VF(p)

OF (p)

Op

. 2 2

! €] o2 Di = — Z (Hpj —pill” — dz’j) (pi — pj)

_ i
Op
k=1 “looks” like a (state-dependent)
| €] 9o, weighted consensus protocol!
2 — Op

—R(p)'o; = —R"(p)R(p)p — R" (p)d’

symmetric rigidity
matrix

=
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Formation Control

example... p=—R"(p)o <= p
R(p) =

2 _

$ & _
y N R (p) =

=

edge 3 3

= —> 2104 (pi — pj)

pi —ps p3 —Dpi 0o
0 Py —P3 D3 — Dy

pi —p3 0 p3 —Dpi

P1 — P2 0 p1—p3 |

P2 —P1 P2 — P3 0
0 p3 — P2 P3 —P1

01(]01 —Pz) T 03(]?1 —]93)
01(292 —pl) T 02(192 —p3)
02(]03 —PQ) T 03(]93 —pl)
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Formation Control - Stability Analysis

p=—R"(p)R(p)p — R" (p)d’

what are the equilibrium configurations?

0=—R"(p)R(p)p — R" (p)d’

@ o0=rRe)p- &= (Ipi—pI> —d) =0

exactly the equilibrium we want!

Q- ) | ((mw W) J@mes -

9 0= (I, ® E) ( %Eﬁg | (| Welp) Wy(p) ](12®ET)p—d2)>
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Formation Control - Stability Analysis

p=—R"(p)R(p)p — R" (p)d’

d d
example...
pr = (pr—p2ll* = d*)(p2 — p1) + (lpr — p3l* — @*)(ps — p1)
p2 = (llpr = p2ll* = &) (p1 — p2) + ([p2 — p3lI* — d*)(p3 — p2)
ps = (llp1 —p3ll* = d*)(pr — p3) + (Ilp2 — p3|I* — d*)(p2 — ps) p
2 32
” |pi — pjlI” =d the system has additional
d ‘undesirable’ equilibriums

a o= T —  ‘collinear’

e @ ‘consensus’
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Formation Control - Stability Analysis

p=—R"(p)R(p)p — R" (p)d’

d d
example...
p1 = (|lpr —p2||* —d*)(p2 — p1) + (|lp1 — p3|* — d*)(p3 — p1)
pe = (lp1 —p2l* — d*)(p1 — p2) + (Ilp2 — 3l — d°)(ps — p2)
ps = (llp1 — psll* — &*)(p1 — p3) + (llp2 — p3lI* — d*)(p2 — p3) p

linearization about ‘desired” equilibrium P (||1_9@ —D; H2 — dz)

. (P, —DP2)(D1 — D) 0 0
op(t)=— (E(9) ® I2) 0 (Do — P3) (P2 — D) 0 (E(g)T & I2) op(t),
0 0 (Ps —11) @3 —11)"

linearized state-matrix has 3 eigenvalues at O e can not conclude stability

and remaining eigenval ues are real and Of equilibrium from Iinearized
negative model!

' o 4
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Formation Control - Stability Analysis

p=—R"(p)R(p)p — R" (p)d’

a Lyapunov approach recall: the potential function defining a
1 gradient dynamical system can serve as
F(p) = ZO'TO' a Lyapunov function candidate!
d T T : : ..
EF(p) = —0" R(p)R" (p)o <0 negative semi-definite
1. o =0
Lpp) =0e Rpo=0 , |~
dt 2. Di — Pj o € NE ® I]
' o 4
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Formation Control - Stability Analysis

p=—R"(p)R(p)p — R" (p)d’

a Lyapunov approach recall: the potential function defining a
1 gradient dynamical system can serve as
F(p) = ZO'TO' a Lyapunov function candidate!
d T T : : ..
EF(p) = —0" R(p)R" (p)o <0 negative semi-definite
1. o =0
Lpp) =0e Rpo=0 , |~
dt 2. Di — Pj o € NE ® I]
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Formation Control - Stability Analysis

p=—R"(p)R(p)p — R" (p)d’

Stability and full row rank
a rigidity matrix with full row rank (i.e.
or & {o|R" (p)o =0} = {0}

minimally infinitesimally rigid framework)

d d

G EP) =0 Rp)R (Po<0 = —F(p)=0s0=0
a positive definite matrix!

Theorem

If the rigidity matrix has full row rank then the distributed
distance-based formation control law (exponentially) converges
to the specified formation set (locally).
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Formation Control - Stability Analysis

Exponential stability...

T =g(x,t)
if there exists a positive definite - B (9V(x) :
Lyapunov function satisfying Viz) = I < —kV(z)
then the nonlinear system is exponentially stable.
T T
- o' R(p)R(p)” o
F(p) = F(p)
F'(p)
T T
o R(p)R(p)” o
= TP PR () < o) (R)RD)T) F(p)
ZO’ o)
rigidity eigenvalue!
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Frameworks with Full Row Rank

A framework is minimally infinitesimally rigid (MIR) if it is infinitesimally
rigid and minimally rigid.

= rk[R(p)] = 2|V| — 3 = |&] MIR frameworks have

full row rank

are there other (not infinitesimally rigid)
frameworks that have full row rank?

what are the necessary and sufficient conditions
needed to ensure the rigidity matrix of a framework
has full row rank?
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Frameworks with Full Row Rank

Definition
Given a framework (G, p), any set of scalars w;; = w;;
assigned to each edge of G is called a stress of the framework.

Definition
A stress w = [ wy v Wig 1s called a
self-stress (or equilibrium stress) if

}T

Zwij(pj —pi) =0, Vi € V.

self-stresses mean the “forces” applied to a joint by
neighboring joints (through the bars) are balanced

=
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Frameworks with Full Row Rank

Zwm (pj —pi) =0,VieV < w R(p) =0

g1
proof: > wii(p —0,VieV

e . The space of self-stresses of a
E;E; 2 ?;% 2 ?;iE: 0® BIP=0" framework is the left-null space
o (E® Iz)dlag< 2)w _0 of the rigidity matrix!

s RY (pw=0

S w! R(p) =0

Theorem

The rigidity matrix R(p) of a framework (G, p)
has full row rank if and only if (G, p) only
supports zero self-stresses.

=
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Frameworks with Full Row Rank

4 1 2 1 2 2 3
O @) O @) ), (
1 2 3 1 4
Oo—0
O <JNe O ) ,
5 4 3 4 3 6 5
(a) Tree (b) Cycle (c) MIR (d) General

verity the following:

” The rigidity matrix of a framework for an arbitrary spanning
tree graph has full row rank

The rigidity matrix of a framework for a non-collinear cycle
Q graph has full row rank

9 The rigidity matrix of a rigid framework has full row rank if
and only if it is minimally infinitesimally rigid.
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Frameworks with Full Row Rank

which framework has a rigidity
matrix with full row rank?
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Formation Control

p=—R"(p)R(p)p — R" (p)d’

a=0.5 a=0.5 a=0.8

1 ‘ 6 ‘ 1 ‘

0 4 0

1 2 1

™ ™ 8 w”

2 o 2

3 -2 3

“ 0.5 1 1.5 2 “ 0.5 1 15 2 “ 0.5 1 1.5 2 “ 0.5 1 1.5 2
Time (sec) Time (sec) Time (sec) Time (sec)
(a) Tree (b) Cycle (c) General flexible (d) MIR
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