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Networked systems

Why a tutorial on graph theory in systems and control?

I networks are all around us

I this trend will continue, e.g., internet of things, next generation mobility

I networked robotics and aerospace systems will play an ever increasing role
in the society at all levels

I system and control theory can play a significant role in this new era of
networked systems ...

I however, we need to start blending in combinatorial/discrete mathematics
in mainstream control theory even more ...

This tutorial is framed around this objective ...
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a Few Immediate Observations

I networked systems are coupled through information exchange

I inter-agent information exchange is through sensing and communication

I the collective dynamics is a function of ”agent” dynamics and the
information-induced coupling

I we can synthesize collective behavior by making the control action on each
agent a function of the information available to the agent (sense,
communicated, etc.)

a powerful abstraction for encoding “interactions” in a network
is that of a graph
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Graph Abstraction

I a finite, undirected, simple graph, or a graph for short, is built upon a finite
set of ”nodes” or vertex set V = {v1,v2, . . . ,vn}

I the edge set is a subset of the two-element subsets of V, i.e., E ⊆ [V]2
I the graph is then specified by G = (V,E)

for example, we can have G = (V,E) where

V = {1,2,3} and E = {{1,2},{2,3}}

a simpler representation
however would be

1

2

3
Some natural constructs based on the correspondence between set theoretic and
graph-theoretic representation can now be defined– examples: paths, walks,
cycles, etc.
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Simple Constructs on Graphs

a path a cycle a walk

graphs can be used in general to encode relations between objects, e.g.,
existence of communication or sensing links, routes, etc.
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Birth of Graph Theory

bridges of Konigsberg and Euler’s abstraction:

this is an important step, as it stripes away all particular details related to the
Konigsberg bridges that are not relevant to the problem at hand! so now we
have a graph! what are we looking for now? We want to find out if there is a
closed walk traversing all edges of the graph exactly once. If such a walk exists
we call the graph Eulerian.

Theorem
A connected graph G is Eulerian if and if only every vertex has an even degree.
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Graphs and Matrices

As we aim to embed graph/networks in dynamic systems, it is natural to work
with linear algebraic representation. For example, a graph can be represented as,

v2

v1

v3

v4

A(G) =

2
664

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

3
775

the adjacency matrix for the n-node graph G = (V,E) is the n×n matrix:

[A(G)]i j =

{
1 if viv j ∈ E,
0 otherwise.
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Degree Matrix and the Laplacian

note that the adjacency for the graph is symmetric by construction
there are other matrices associated with the graph, for example, let d(v) be the
number of neighbors of vertex v (its degree) and define the degree matrix as,

∆(G) =




d(v1) 0 · · · 0
0 d(v2) · · · 0

...
...

. . .
...

0 0 · · · d(vn)




note that the adjacency and the degree matrices are both square, say, n×n,
where n is the number of nodes

Another useful matrix representation is the Laplacian:

L(G) = ∆(G)−A(G)

graph Laplacian has been very popular in multiagent networks!
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Incidence Matrix

Yet another matrix representation can in fact capture the orientation of the
edge as well: suppose the graph has n nodes and m edges: the n×m incidence
matrix E(G) is defined as

E(G) = [Ei j] , where Ei j =




−1 if vi is the tail of e j,
1 if vi is the head of e j,
0 otherwise.

v1

v2

v3

v4

e1

e2

e3

E(G) =




−1 −1 0
0 1 0
1 0 1
0 0 −1




note that for different orientations on the edges we get a different incidence
matrix! (same dimension though!)

Let us see what happens when we consider E(G)E(G)T for some arbitrary
orientation. First notice that the resulting matrix will be n×n.
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Incidence and Laplacian

A compact formula for matrix multiplication is of course:

[AB]i j = ∑
k

AikBk j

[E(G)E(G)T ]i j = ∑
k

E(G)ikE(G) jk

which is −1 when i and j are incident on the same edge k, that is if they are
neighbors! Moreover,

[E(G)E(G)T ]ii = ∑
k

E(G)ikE(G)ik

counts the number of edges incident on node i, i.e., its degree! so guess what:

L(G) = E(G)E(G)T

independent of the orientation that you have given to the incidence matrix!
This also shows that L(G) is positive semi-definite, since for all x ∈ Rn:

xT L(G)x = xT E(G)E(G)T x = ‖E(G)T x‖2 ≥ 0

which means that not only are the eigenvalues of the Laplacian real numbers (as
the Laplacian is symmetric) but also non-negative
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Spectra of the Graph Laplacian

For Laplacian, we can order the eigenvalues as follows,

0≤ λ1(G)≤ λ2(G)≤ . . .λn(G);

in this case, λk refers to the kth smallest eigenvalue of the (graph) Laplacian ...

I By construction, L(G)1 = 0 for any graph (why?). So λ1(G) = 0.

I A natural question (with many consequences) is whether λ2(G)> 0?

I In other words, we need to characterize the null space of L(G):

N (L(G)) = {z ∈ Rn |L(G)z = 0}

What are the vectors in N (L(G)) except the subspace generated by 1,
namely,

A= {x |x = α1, α ∈ R}
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Null Space of the Laplacian

in order to answer this question, notice that if z ∈N (L(G)), then

L(G)z = E(G)E(G)T z = 0

that is,

zT E(G)E(G)T z = 0

or ‖E(G)T z‖2 = 0 or E(G)T z = 0 or zT E(G) = 0. This means that if i j ∈ E, then
zi = z j; so if the graph is connected,

z1 = z2 = . . .= zn

that is z = α1 for some α! And in fact, if we think of z as

z : V(G)→ Rn

then z is constant on each (connected) component of G. What that means is
that for each component we get one extra dimension for the null space of L(G).

Lemma

Let G have c connected components (when c = 1 the graph is connected). Then
rank L(G) is n− c.
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Rank, λ2, and Connectivity

and in fact, rank L(G) = n−1 if and only if G is connected! this is our first
encounter with how the “linear algebra” of the Laplacian tells us something
about the structure of the graph.
another way to say the same thing is that

G is connected if and only if λ2(G)> 0

a natural question now is whether more positive λ2 captures some qualitative
notion of ”more” connectivity? For example, we can define the node
connectivity of G, denoted by κ0(G) as the minimum number of nodes that
needs to be removed from the graph before the graph becomes disconnected.

Courant-Fisher to the rescue:

λ2(G) = min
x⊥1,‖x‖=1

x>L(G)x

So this means that

λ2(G)≤ x>L(G)x for all x⊥ 1,‖x‖= 1
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Structure vs. Spectra

Let us consider removing S⊂ V (subset of nodes) from the graph G = (V,E); we
denote the Laplacian of this new graph as L(G\S).

Let y be the normalized eigenvector corresponding to λ2(G\S):
L(G\S)y = λ2(G\S)y; ‖y‖= 1,y⊥ 1

Now define the vector

z =
[

y
0

]
;

note that ‖z‖= 1 and z⊥ 1; as such λ2(G)≤ z>L(G)z. That is,

λ2(G)≤ ∑
uv∈E(G\S)

(yu− yv)
2 + ∑

uv∈E(S)
(zu− zv)

2

︸ ︷︷ ︸
0

+ ∑
u∈S

∑
v∈G\S

( zu︸︷︷︸
0

−zv)
2

so,

λ2(G)≤ λ2(G\S)+ ∑
u∈S

1 = λ2(G\S)+ |S|
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Spectra vs. Structure

Okay! Now suppose that S is chosen as the cutset corresponding to κ0(G).
Then λ2(G\S) = 0 and

λ2(G)≤ κ0(G)

Upshot: λ2(G) is a lower bound for node connectivity!

The bound is actually tight, for example λ2(C4) = κ0(C4) = 2

summary so far:

I L(G) = E(G)E(G)> = ∆(G)−A(G)
I L(G) is positive semidefinite

I λ2(G)> 0 iff G is connected

I λ2(G) is a measure of connectivity

Oh ... one last thing: trace of any matrix is the sum of its eigenvalues, so

traceL(G) = ∑
i

d(vi) = 2 |E(G)|
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Spectra of Some Classes of Graphs
Complete Graph

It would be good to develop some intuition for spectra of graphs, and in
particular their dependencies on n, if any. Of course we have to start with the
complete graph on n nodes, denoted by Kn:

L(Kn) =




n−1 −1 · · · −1 −1
−1 n−1 · · · −1 −1

...
...

...
...

...
−1 −1 −1 −1 n−1


= nI−11T

as always, λ1(Kn) = 0 and u1 = 1/
√

n. The other eigenvectors, generically
denoted by x for now, can chosen to be orthogonal to 1. So

L(Kn)x = (nI−11T )x = λx

Hence for all these eigenvectors

nx = λx!

The spectrum of L(Kn) is thus

0,n,n, . . .n; check that trace{L(Kn)}= n(n−1)
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Spectra of some other classes of graphs

2(1− cos2kπ/n), k = 0,1, . . .n−1

2(1− coskπ/n), k = 0,1, . . .n−1

n−2 eigenvalues of 1, one eigenvalue of
zero (as always) and last one is
2(n−1)− (n−2) = n
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dynamics on graphs

so far, graphs and some linear algebra, spectra vs. structure, and examples on
how to find the spectra in closed form for certain classes of graphs. We now
what to see how this machinery actually helps us understand dynamics on
networks

Our Action Plan is as follows:

1. we start with a baseline dynamics/distributed algorithm called consensus

2. we relate consensus behavior to structure of the graph

3. this setup can then be extended to directed graphs

We then move on to show that this distributed algorithm can be used in many
different context to do very useful distributed tasks for us

However, it is important to note that the same line of research could
have been pursued with a different baseline/distributed protocol or view
completely from the perspective of patterned matrices independent of
particular protocol!
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Network in the Dynamics- general setup

I Graph G is composed of physical nodes V and coupling edges E
I Node i acquires information from the set of its neighbors N (i)

I Node i has a state xi(t) and neighbor information Ii(t) =
{

x j(t)| j ∈N (i)
}

I Provides a naturally distributed dynamics over G

ẋi(t) = fi(xi(t), Ii(t))

I some of the earlier works in distributed decision-making include: DeGroot
(’74), Borkar and Varaiya (’82), Tsitsiklis (’84) ...
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Agreement/Consensus Protocol

Consensus Model

ẋi(t) =− ∑
j∈N(i)

wi j (xi(t)− x j(t))

 ẋ(t) =−L(G)x(t)

where L(G) is the (weighted) Laplacian
matrix.

I appears in: flocking, formation control, opinion dynamics, energy systems,
synchronization, distributed estimation, distributed optimization, among
many others!

Let us examine the convergence of the algorithm a bit more ... in terms of the
graph structure. We will assume that wi j = 1 for this purpose, although our
observations generalize seamlessly to weighted graphs
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Consensus and λ2

Let us consider consensus on undirected networks ... spectral factorization of
the Laplacian is of the form

L(G) =UΛU>

where

U =
[

u1 u2 · · · un
]

and Λ =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn




as such,

x(t) = e−L(G)tx(0) =Ue−tΛUT x(0)

= u>1 x(0)u1 + e−λ2tu>2 x(0)u2 + . . .+ e−λntu>n x(0)un

so if the graph is connected (noting that u1 = 1/
√

n)

x(t)→ 1T x(0)
n

1 at a rate proportional to λ2(G)!
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more on consensus and λ2

in fact,

‖x(t)− 1T x(0)
n
‖ = ‖

n

∑
i=2

e−λit u>i x(0)︸ ︷︷ ︸
αi

ui‖

=
n

∑
i=2

e−λit |αi| ≤ (n−1) β︸︷︷︸
maxi |αi|

e−λ2t

so if we want ‖x(t)− 1T
x(0)
n ‖ ≤ ε for some ε > 0, then we need

t ≥ {ln β (n−1)
ε

}/λ2(G) ∝
1

λ2(G)

higher algebraic connectivity directly translates to faster convergence (in a linear
way)!
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what insights graph theory provides for consensus

some observations:

I Recall that λ2(Pn) = 2(1− coskπ/n), λ2(Cn) = 2(1− cos2kπ/n),
λ2(Sn) = 1, and λ2(Kn) = n

I what this means is that as n→ ∞, the rate of convergence for Pn and Cn
goes to zero!

I in the meantime, the rate of convergence for Kn grows linearly with n
I however, the number of edges for Pn, Cn grow linearly with n but for Kn the

number of edges is O(n2)!

this thread of thought leads to the area of graph synthesis
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how baseline consensus can be used for more elaborate
distributed algorithms

I as a distributed subroutine for mixing

I including the right inputs to consensus (not just driven by initial conditions)

I consensus with nonlinear and/or state-dependent weights (used in
preserving connectivity in distributed robotics)

I consensus with negative, complex-valued, and matrix weights

I consensus across scales

I consensus with security and privacy considerations
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