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Which structured LTI systems can sustain stable
dynamics?
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▶ Does there exist values of the aij ’s that yield asymptotically stable
dynamics? If so, we call the system structurally stable.

▶ Does there exist values of the aij ’s and bi’s that yield controllable
dynamics? If so, we call the system structurally controllable.

▶ Recall: Linear time-invariant dynamics is asymptotically stable iff
the eigevalues of the system matrix have strictly negative real parts.

▶ Graph theory is the natural framework to study structural stability.
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Reformulating the structural stability problem

A =


0 ∗ ∗ 0 ∗
∗ ∗ 0 ∗ ∗
0 ∗ 0 ∗ 0
0 ∗ 0 ∗ ∗
∗ 0 0 ∗ 0


∗ entries are arbitrary real

0 entries are fixed to zero

Definition (Zero-pattern (ZP))
Set Eij to be the n× n matrix with all entries 0 except for the ijth one,
which is 1. We call a zero pattern a vector space Z of matrices

A =
∑

(i,j)∈N

aijEij .

▶ Does the ZP contain stable (Hurwitz) matrices?

▶ We call a ZP that contains Hurwitz matrices stable
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Hurwitz Digraphs and Zero-Patterns
▶ Think of a ZP as an adjacency matrix with

0 −→ 0

∗ −→ 1

▶ There is a bijection between zero patterns Z and digraphs
G = (V,E) with V = {v1, . . . , vn} and E = N .
∗ 0 0 ∗ 0

∗ 0 0 0 0

0 ∗ 0 0 0

0 0 ∗ 0 ∗
∗ 0 0 ∗ 0
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▶ We call a graph Hurwitz or stable if the corresponding ZP is stable.

How to determine if a graph is Hurwitz? How to create
Hurwitz graphs?
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Which graph is stable?
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∗ ∗ 0 0 0
∗ 0 ∗ 0 0
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∗ 0 0 0 0



1

2

3

5

4


∗ ∗ 0 0 ∗
0 0 ∗ 0 0
∗ 0 0 ∗ 0
0 0 0 0 ∗
∗ 0 0 ∗ 0



Which graph is stable?
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Key idea: need enough mixing of information

Lemma
A digraph G is stable only if every strongly connected component has a
node with a self-loop

1

2 3

Not stable: the strongly connected component
{2, 3} has no nodes with a self-loop.

This is not the end of the story...

1

2 3

The graph is strongly connected and has a
self-loop, yet not stable.

−→ need to find the graphical structure that enables stability
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k-decompositions

▶ k-cycle in G: a sequence of k distinct nodes
connected by edges.

▶ Two cycles are disjoint if they have no nodes in
common.

▶ k-decomposition in G: union of disjoint cycles
covering k nodes.
A k-decomposition is given by cycles
S1, . . . , Sl if the Si are disjoint and
|S1|+ · · ·+ |Sl| = k.

▶ Hamiltonian cycle (resp. decomposition):
n-cycle (resp. decomposition).
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6

1-cycle = (1)
2-cycle: (23)
3-cycle: (456)
3-decomp.: (1)(23) or
(456)
4-decomp.: (1)(456)
5-decomp.: (23)(456)
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A necessary condition for stability

Theorem1

A digraph G is stable only if it contains a k-decomposition for each
k = 1, 2, . . . , n
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∗ ∗ 0 0 ∗
0 0 ∗ 0 0
∗ 0 0 ∗ 0
0 0 0 0 ∗
∗ 0 0 ∗ 0



1-decomp.: (1), 2-decomp.: (15), 3-decomp.:(1)(45) but no
4-decomp. −→ not stable.
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A necessary condition for stability: sketch of proof

▶ Sk: symmetric group on k characters.

▶ For σ ∈ Sk, let σ(i) be the position of the ith in the permutation.

e.g. σ : {1, 2, 3, 4} → {2, 1, 4, 3} then σ(1) = 2 and σ(3) = 4.

▶ It is known that A is Hurwitz only if all coefficients of its
characteristic polynomial are non-zero.

▶ Characteristic polynomial of A is given by

det(Iλ−A) =

n−1∑
k=0

(−1)kλk
∑

σ∈Sn−k

(−1)σ
n−k∏
i=1

ai,σ(i)
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A necessary condition for stability: sketch of proof (II)

▶ Each term
∏k

i=1 ai,σ(i) corresponds to a
k-decomposition.

▶ Said otherwise: each permutation in Sk

corresponds to a k-decomposition:
e.g. permutation in S3 that sends {4, 5, 6}
to {5, 6, 4} is depicted in red.
permutation in S3 that sends {1, 2, 3} to
{1, 3, 2} is depicted in blue+green.

▶ Conclusion: no k-decompositions =⇒
degree n− k term in characteristic
polynomial of any matrix in Z is zero =⇒
graph and ZP are not stable
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1

2 3
p(s) =

s3 − a11s
2 + 0s− a12a23a31.
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A sufficient condition for stability
Theorem2

A digraph G is stable if it contains a sequence of nested
k-decomposition for each k = 1, 2, . . . , n.

We say that a k-decomposition K1 is nested in K2 if the node set of K1

is included in the one of K2
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∗ ∗ 0 0 0
∗ 0 ∗ 0 0
∗ 0 0 ∗ 0
0 0 ∗ 0 ∗
∗ 0 0 0 0


1-decomp.: (1), 2-decomp.: (12), 3-decomp.:(123),
4-decomp.:(12(34), 5-decomp.:(12345).
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Are the necessary and sufficient conditions close?

▶ There are many graphs that are stable, but do not pass the
sufficient condition.

▶ From our simulations, we observe that the necessary condition is
close to being sufficient: the number of graphs that pass the
necessary condition and are not stable is relatively small.

▶ Stability is not generic. The proportion of stable matrices in a ZP
can be very small.

▶ Hence simulations studies are “hard”: one needs to sample many
matrices in a SMS to conclude non-stability. Very unlike structural
controllability: almost all systems in a zero-pattern are controllable.
Sample one system: with probability one, it is controllable if the
zero pattern is.
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Minimal stable graphs and notions of robustness
Observation: adding an edge to a stable graph yields another stable

graph.
We say that graph stability is monotone with respect to edge addition.

This simple observation yields two interesting definitions:
▶ Minimal stable graphs: stable graphs for which removing any edge

yields an unstable graph.
All stable graphs are “descendants” of minimal stable graphs. We
can think of them as “prime” graphs.

▶ Robustly stable graphs: stable graphs for which removing any
edge yields a stable graph.
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The Tree of Three-Graphs
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Box → graph on three
nodes
Same # edges → same row
Edge between box denotes
inclusion
Shade: # stable ancestors

# ancestors
Minimal stable: lightest
shade. There are 7.
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Reciprocal or Symmetric graphs

▶ It is often the case that information exchange is bilateral: i ↔ j.

▶ We call a graph reciprocal or symmetric of to every edge (i, j) ∈ E

there is an edge (j, i) ∈ E.

▶ The corresponding ZP is symmetric:

12 5

3 4

A =


∗ ∗ ∗ 0 ∗
∗ ∗ ∗ 0 0

∗ ∗ 0 ∗ 0

0 0 ∗ 0 ∗
∗ 0 0 ∗ 0


▶ Two cases: either the matrices in the ZP are symmetric (strongly

symmetric ZP) or not necessarily symmetric (weakly symmetric ZP).
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Stability of Symmetric Graphs

Definition3
A ZP is (weakly symmetric if to a free variable in position ij corresponds
a free variable in position ji. A ZP is strongly symmetric if it only
contains symmetric matrices.

Theorem3

A strongly symmetric ZP is stable if and only if all its diagonal elements
are free.

Theorem3

A weakly symmetric ZP is stable if and only if its graph is so that
1. Every node is strongly connected to a self-loop
2. The graph contains a Hamiltonian decomposition.

3A. Kirkoryan and B. “Symmetric Sparse Systems”, CDC 2014.
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Key notion: fat trees

The proof of the last theorem is graphical in nature. We sketch is here.
A tree graph is a graph without cycles.
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▶ Tree graph → Nodes can be cycles → Edges are symmetric → fat
tree
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Stability of symmetric graphs

▶ Proof idea: Given a symmetric graph G, show that if
1. Every node in G is connected to a self-loop
2. G contains a Hamiltonian decomposition

→ then there exists a sequence of nested k-decompositions,
k = 1, . . . , n.

▶ The conclusion above says that we satisfy the sufficient condition
presented earlier.

▶ Proof technique: find a fat tree in G. Fat trees provide a natural
ordering of nodes. Use the ordering to exhibit nested
k-decompositions:
We label (order) the nodes so that
{1}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , n} all have k-decompositions. By
construction, they are nested.
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Stability of symmetric graphs (II)

v0

v4

v3

v1

v2

Draw the cycles of a Hamiltonian
decomposition of G. This is a
subgraph of G.

Connect every cycle to the cycle
with the self-loop. We can do so by
assumption 1.
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Stability of symmetric graphs (III)

Add reciprocal edges. The resulting
graph is a planar subgraph of G by
construction.
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Ordering: Set v0 at 1. Order nodes
counter-clockwise. Skip already numbered
nodes. By construction, no node lies inside
→ complete ordering. Call this graph P .
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Stability of symmetric graphs: (IV)

The last graph shown is a subgraph of G. We show that is satisfies the
hypothesis of Theorem 2.
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3 ▶ There is a unique path from any node
k to 1 using the plain edges of P only.

▶ Key observation: by construction, the
subgraph induced by the node set
{1, 2, . . . , k} is the union of the path
joining 1 to k and l-cycles.
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Stability of symmetric graphs: (V)
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A n = 22-decomposition

▶ The subgraph induced by nodes
{1, . . . , k} admits a Hamiltonian
decomposition, which is thus a
k-decomposition of G.

▶ Depending on whether the path
joining 1 to k has an even or odd
number of nodes, the decomposition
is in 2-cycles (even) or self=loop+2
cycles (odd).

▶ Repeating the procedure for each
node k = 1, . . . , n, we obtain nested
k-decompositions.

M.-A. Belabbas (University of Illinois) Strcutural Stability CDC18 22.1/ 28



Structural Stability of Random Graphs

▶ Random graph theory provides a different lens to look at what may
otherwise be hard problems.

▶ We look for conditions under which a sample graph form a given
distribution is structurally stable with overwhelming probability.

▶ The results are asymptotic in the number of nodes.

▶ Allows us to overlook finer structural details and obtain answers
when the graph is very large.

▶ Recall: Bernoulli distribution with parameter p: P (ω = 1) = p

P (ω = 0) = 1− p, ω ∈ Ω = {0, 1}.
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Random graphs models

▶ We look at two random graph models for symmetric ZP

▶ Model 1: variable number of edges Gn
p,q

1. Graph on n nodes
2. Existence of an edge between nodes i and j, i ̸= j are independent Bernoulli

random variables with parameter p
3. Existence of a self-loop are independent Bernoulli r.v. with parameter q.

▶ Model 2: fixed number of edges Fn
M,K

1. Graph on n nodes
2. Exactly M edges (i, j), chosen uniformly at random amongst all possible

edges (i, j), i ̸= j.
3. Exactly K self-loops chosen uniformly at random.

Definition
We say that almost every random graph Gn has a property X, if
P(Gn has X) → 1 as n → ∞
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Problem Statement

▶ We consider probabilities that depend on n. We need
p(n), q(n) → 0 n → ∞, otherwise random graphs a very dense.

Problem
For what magnitudes of p = p(n) and q = q(n), is almost every random
graph Gn

p,q ) stable? For what magnitudes of M = M(n) and K = K(n),
is almost every random graph Fn

M,K ) stable?

▶ Define ω1, ω2, such that:

p = p(n) =
ln(n) + ω1

n
, q = q(n) =

ω2

n
.

This particular form for p(n), q(n) makes statements easier.
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Results for Model 1

Theorem4

Assume that q(n) < 1− ε for some ε > 0

1. Almost every graph in Gn
0,q contains a self-loop if and only if

ω2 → ∞.
2. Almost every graph in Gn

p,0 contains a Hamiltonian decomposition if
and only if ω1 → ∞.

3.
P(Gn

p,q is stable) → 1 ⇐⇒ ω1, ω2 → ∞.

p = p(n) =
ln(n) + ω1

n
, q = q(n) =

ω2

n
.

p is probability of an edge, q is probability of a self loop

4B., A. Kirkoryan, preprint; A. Kirkoryan PhD thesis
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Results for Model 2

Define ω1, ω2 such that:

M = M(n) =
n(ln(n) + ω1)

2
, K = K(n) = ω2.

Theorem5

Assume that M < n2(1−ε)
2 for some ε > 0, then

P(Gn
M,K is stable) → 1 ⇐⇒ ω1 → ∞, ω2 ≥ 1.

5B., A. Kirkoryan, preprint; A. Kirkoryan PhD thesis
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Thank you for your attention!
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